
Mission Critical Software in LISA Pathfinder
J. A. Ortega-Ruiz, A. Conchillo, X. Xirgu and C. Boatella

Institut d’Estudis Espacials de Catalunya (IEEC), Barcelona, Spain

Abstract. We provide a quick overview of the challenges faced during the engineering of LISA
Pathfinder’s Data Management Unit from the perspective of software development. Data collection
and system monitoring is coordinated by the DMU via a software system that faces many a design
and implementation challenge in the form of performance and reliability requirements. This paper
introduces these challenges, their origin, and the software techniques used to overcome them.

Keywords: Gravitational Waves, LISA, LISA Pathfinder, Software Engineering
PACS: 04.80.Nn, 95.55.Ym, 04.30.Nk

OVERVIEW

From a technological point of view, LISA Pathfinder (LPF) is a major engineering un-
dertaking, which involves a variety of (sometimes brand new) hardware and software
developments. One of the components of LPF is the Data Management Unit (DMU), in
charge of coordinating the acquisition of data from the laser interferometer as well as the
different diagnostic subsystems that conform the mission. Thus, the DMU will play the
part of a communications gateway between the central on-board computer in the space-
craft and several subsystems, with a considerable amount of autonomous operative and
control responsibilities which grant a dedicated on-board computer and associated soft-
ware. This presentation describes the architecture and main design traits of the software
in charge of controlling the DMU1. Functionally, it must meet a series of non-trivial
requirements, including real-time performance and the adequate use of redundant com-
munication channels. Moreover, the architecture must be flexible enough to accomodate
in-flight modifications of the executable software (in the form of telemetry patches),
while, at the same time, ensuring the robustness of this mission-critical application. In
addition to describing how and why we combine off-the-self components (like real-time
operating systems) with special purpose software in order to meet our ends, we intend
to provide an overview of the engineering processes and development standards in place
to ensure the accomplishment of the stringent requirements we face.

THE DATA MANAGEMENT UNIT

Figure 1 gives a simplified, yet accurate, description of the interaction context where
the DMU’s activities take place. As we can see, its main responsibility is acting as an

1 We refer the reader to Alberto Lobo et al in this volume for a description of the diagnostic subsystems
coordinated by the DMU software.



interface between the on-board computer (OBC) and the measuring instruments that
conform the scientific payload of the LPF spacecraft, namely, the phasemeter and inertial
sensors on the one hand and the diagnostic subsystems on the other. The DMU receives
commands from the OBC, forwarding them as necessary to allow remote control of the
scientific instruments. It also collects and delivers the science data produced by those
instruments and monitors the overall status of all subsystems.

FIGURE 1. A simplified block description of the DMU’s interaction context.

The DMU software must meet not only the above functionality, but also a set of
non-functional requirements that actually constitute the main challenges faced during
its implementation. To begin with, we need to ensure the robustness and reliability of
the system, providing adequate recovery pathways in case of error or malfunction. The
software must also meet hard real-time constraints when it comes to timely delivery of
scientific data, since phasemeter readouts must be collected at a very precise frequency
of 100Hz. Finally, these goals are to be attained with a small footprint, both in space and
processor resources, imposed (as we show below) by a software architecture designed
to fulfill rather stringent redundancy and safety requirements.

Of course, no software system is an island. The DMU software runs on a specially
designed hardware platform, which often simplifies and improves (but sometimes ham-
pers) the implementation of the required features. The main traits of the DMU hardware
platform are the following:

• An ERC32, RISC-based processor running at a clock frequency of 12 MHz, which
imposes a hard limit on the software’s operation velocity.

• 1 Mb RAM memory, with automatic 2-bits error detection and 1-bit correction,
which greatly simplifies memory error management. In addition we have at our
disposal 2 Mb of EEPROM memory, which is used for modifiable, persistent code.

• 64 Kb PROM (non-modifiable) persistent storage, for bootstrapping the whole
system. The reduced amount of PROM available constitutes a major challenge.



• Robust communication with external systems via MIL-STD-1553B buses. These
communication devices use 20-bit buses which include a 4 bit Hamming code for
error detection. In addition, most of the data-link communication layer is indepen-
dently handled by the available bus controller chips.

• Two FPGAs providing memory-mapped access to all external devices. Another big
win from the software’s point of view, since these specially programmed FPGAs
hide all the complexity associated with the diverse hardware interfaces of the DMU.

Finally, every hardware component is redundant. This fact not only boosts the DMU’s
overall reliability, but simplifies our software by removing complex execution paths
usually associated with recovery actions in the face of hardware failure. As a generic
architectural design decision, we avoid all but the simplest hardware recovery actions,
relying instead on a switch to redundant components. Our main worry becomes therefore
ensuring the reliability of software operations per se, with an architecture, reviewed in
the next section, that favours flexibility and remote intervention.

THE ARCHITECTURAL DIVIDE

As already mentioned, the DMU’s software architecture must maximize flexibility and
remote recovery actions in order to prevent unrecoverable lock-outs during the mission’s
operational life. As much as a proper quality assurance process (as described below)
provides guarantees of the software’s correctness, the possibility of undetected flaws in
the flying software cannot be discounted. Thus, the design leaves open the possibility
of bug fixing (or even functional modifications) during the DMU operations. Obviously,
the smaller a source code base is, the larger will be our chances of making it bug-free.
Therefore, we have extracted a small functional core, called the Boot Software (BSW),
which fits in the 64 Kb PROM and is in charge of bootstrapping the system. The rest of
the application software, stored in the EEPROM, is remotely modifiable, allowing the
correction of unexpected flaws during the mission lifetime.

Turning our attention to the BSW, the goal of producing a 64 Kb (≈ 104 LOC in
C with assembler snippets) application is attainable, although this reduced size poses
certain implementation challenges. Admittedly, 64 Kb is usually not a small size by
embedded systems standards, but in our case, the BSW is not only in charge of booting
the system, but also of setting up the communications link with the OBC (where we
find non-trivial data-link and transport protocol layers), keep an eye and report on
the overall hardware health status and managing the ASW code (stored in EEPROM),
allowing its patching by incoming telecommands. This actually amounts to implement
a small real-time kernel, as shown in figure 2. Here we find a hardware abstraction layer
(greatly simplified by the FPGAs, but needing nonetheless a driver for the MIL-STD
controller), a communications stack implementing the OBC-DMU transport protocol
(PUS), and a task scheduler to manage concurrent activities. Those modules are among
the typical ones to be found in regular operating systems, although implemented in a
much simplified fashion (for instance, the scheduler is based on polling). Over them, the
key high-level task is the ASW manager, which attends incoming patching requests and
finally loads and excutes the ASW.



FIGURE 2. The BSW actually implements a small real-time operating system.

Although the ASW takes the lion’s share of the DMU’s operational time and imple-
ments a much wider range of functional requirements, its design and implementation
is simplified by the use of a COTS real-time kernel (RTEMS2), and the reuse of the
communications driver and protocol stack already present in the BSW. The main chal-
lenge faced during the ASW development is meeting the strict deadlines assigned to
processing and delivery of phasemeter read-outs, which demands a precise time slicing
for concurrent tasks. The hard real-time capabilities offered by RTEMS have been a key
element in our accomplishing these goals, by providing higher-level abstractions and
patterns. It is also worth noting that the maturity of the kernel’s code base contributes
to our confidence in the solidity of the resulting application, and simplifies the quality
assurance process for the ASW.

QUALITY MATTERS

Quality Assurance is an integral process encompassing all stages of our software de-
velopment life-cycle. It relies on a series of engineering standards, taylored from ESA
templates, and covering all key aspects of the development.

Testing is central. Defined in the verification standards, it includes thorough unit test-
ing (with processor emulators support) during the coding phase, followed by (module)
integration tests (using simulators for all external subsystems communicating with the
DMU) and, finally, validation tests against the mission requirements.

A well defined engineering process is in place, relying on key milestones (PDR, CDR,
TRR) with the participation of all stakeholders. The whole process is captured in a solid,
peer-reviewed documentation set, mimicking the waterfall development model: System
Requirements, Software Requirements, Architectural and Detailed Design, Validation

2 See http://www.rtems.org.



and Verification plans. The ideal waterfall process is the expected outcome of ESA’s En-
gineering Standards. It works as a reporting template for the final product, whose actual
development is much closer to the well-known spiral model. Especially noteworthy is
(unit) testing, which actually drives code writing, in the test-driven development (TDD)
spirit3.

As for the actual methodology driving the architectural and detailed design (iterated)
phases, we are using Ward-Mellor Structured Design4, a Yourdon derivative explicitly
taylored to real-time constraints. In this regard, we have consciously avoided heavy-
weight methodologies and notations like UML/RUP (or languages like C++, for that
matter) in order to keep our processes as lightweight as possible, making quality assur-
ance far easier. In addition, our C-based implementation (even with heavy use of data
and functional abstractions) is more amenable to a structured design description than an
(exclusively) object-oriented one.

TOOLS OF THE TRADE

Let us close our overview with an enumeration of our development toolchain, which is,
in our view, a key ingredient in the eventual attainment of our goals.

• Automatic tools
– Code coverage (Cantata). 100% execution and branch.
– Code linting (splint).
– Metrics extraction: MacCabee, cyclomatic (Cantata).

• Semi-automatic tools
– In-code documentation (doxygen).
– Test libraries, stubbing and drivers (Cantata).
– Software and documentation distributed version control system (GNU Arch).
– Emacs, a programmable editor.

• Plain tools
– GNU cross-compilation tool chain.
– ERC32 emulator.
– LATEX, a programmable documentation system.
– MoinMoin WikiWiki, a centralised information repository.
– Python: gluing it all together.

Acknowledgements: We thank Ministerio de Educación y Ciencia for support under
contract ESP2004-01647.

3 See, for instance, http://www.agiledata.org/essays/tdd.html.
4 See Structured Development for Real-Time Systems by P. T. Ward, S. J. Mellor, Prentice Hall 1987.


