@node The REPL, Between the parens, Installation, Top @chapter The REPL @anchor{quick-start} If you've followed the indications in @ref{Setting it up}, your Emacs is now ready to start playing. Otherwise, i'll wait for you: when you're ready, just come back here and proceed to the following sections. @menu * Starting the REPL:: * First aids:: * Switching context:: * Completion and error handling:: * Autodoc and friends:: * Customization and tips:: @end menu @node Starting the REPL, First aids, The REPL, The REPL @section Starting the REPL @cindex REPL To start a Scheme REPL (meaning, a scheme process offering you a Read-Eval-Print Loop), Geiser provides the generic interactive command @command{run-geiser}. If you run it (via, as is customary in Emacs, @kbd{M-x run-geiser}, you'll be saluted by a prompt asking which one of the supported implementations you want to launch (yes, you can stop the asking: see @ref{active-implementations,,below}). Tabbing for completion will offer you, as of this writing, @code{guile} and @code{racket}. Just choose your poison, and a new REPL buffer will pop-up. @imgc{repls} If all went according to plan, you'll be facing an implementation-dependent banner, followed by an interactive prompt. Going according to plan includes having the executable of the Scheme you chose in your path. If that's not the case, you can tell Emacs where it is, as described @ref{impl-binary,, below}. Returning to our REPL, the first thing to notice is that the funny prompt is telling you your current module: its name is the part just after the @@ sign (in Guile, that means @code{guile-user}, while Racket's top namespace doesn't have a name; cf. @ref{Switching context} below). Other than that, this is pretty much equivalent to having a command-line interpreter in a terminal, with a bunch of add-ons that we'll be reviewing below. You can start typing sexps right there: Geiser will only dispatch them for evaluation when they're complete, and will indent new lines properly until then. It will also keep track of your input, maintaining a history file that will be reloaded whenever you restart the REPL. @subsubheading Connecting to an external Scheme @cindex remote REPL @cindex connect to server There's an alternative way of starting a Geiser REPL: you can connect to an external Scheme process, provided it's running a REPL server at some known port. How to make that happen depends on the Scheme implementation. @cindex Guile's REPL server If you use Guile, you just need to start your Guile process (possibly outside Emacs) passing to it the flag @code{--listen}. This flag accepts an optional port as argument (as in @code{--listen=1969}), if you don't want to use the default. @cindex Racket's REPL server In Racket, you have to use the REPL server that comes with Geiser. To that end, put Geiser's Racket scheme directory in the Racket's collection search path and invoke @code{start-geiser} (a procedure in the module @code{geiser/server}) somewhere in your program, passing it the desired port. This procedure will start the REPL server in a separate thread. For an example of how to do that, see the script @file{bin/geiser-racket.sh} in the source distribution, or, if you've compiled Geiser, @file{bin/geiser-racket-noinst} in the build directory, or, if you've installed Geiser, @file{geiser-racket} in @file{/bin}. These scripts start a new interactive Racket that is also running a REPL server (they also load the errortrace library to provide better diagnostics, but that's not strictly needed). With your external Scheme process running and serving, come back to Emacs and execute @kbd{M-x geiser-connect}, @kbd{M-x connect-to-guile} or @kbd{M-x connect-to-racket}. You'll be asked for a host and a port, and, voila, you'll have a Geiser REPL that is served by the remote Scheme process in a dedicated thread, meaning that your external program can go on doing whatever it was doing while you tinker with it from Emacs. Note, however, that all Scheme threads share the heap, so that you'll be able to interact with those other threads in the running scheme from Emacs in a variety of ways. For starters, all your (re)defintions will be visible everywhere. That's dangerous, but will come in handy when you need to debug your running webserver. @cindex remote connections The connection between Emacs and the Scheme process goes over TCP, so it can be as remote as you need, perhaps with the intervention of an SSH tunnel. @node First aids, Switching context, Starting the REPL, The REPL @section First aids @img{repl-menu, right} @cindex REPL commands A quick way of seeing what else Geiser's REPL can do for you, is to display the corresponding entry up there in your menu bar. No, i don't normally use menus either; but they can come in handy until you've memorized Geiser's commands, as a learning device. And yes, i usually run Emacs inside a terminal, but one can always use @uref{http://www.emacswiki.org/emacs/LaCarte, La Carte} to access the menus in a convenient enough fashion. Or just press @kbd{C-h m} and be done with that. Among the commands at your disposal, we find the familiar input navigation keys, with a couple twists. By default, @kbd{M-p} and @kbd{M-n} are bound to @i{matching} items in your input history. That is, they'll find the previous or next sexp that starts with the current input prefix (defined as the text between the end of the prompt and your current position, a.k.a. @dfn{point}, in the buffer). For going up and down the list unconditionally, just use @kbd{C-c M-p} and @kbd{C-c M-n}. In addition, navigation is sexp- rather than line-based. There are also a few commands to twiddle with the Scheme process. @kbd{C-c C-q} will gently ask it to quit, while @kbd{C-u C-c C-q} will mercilessly kill the process (but not before stowing your history in the file system). Unless you're using a remote REPL, that is, in which case both commands will just sever the connection and leave the remote process alone. If worse comes to worst and the process is dead, @kbd{C-c C-z} will restart it (but the same shortcut, issued when the REPL is alive, will bring you back to the buffer you came from, as explained @ref{switching-repl-buff,,here}). The remaining commands are meatier, and deserve sections of their own. @node Switching context, Completion and error handling, First aids, The REPL @section Switching context @cindex current module, in REPL In tune with Geiser's @ref{current-module,,modus operandi}, evaluations in the REPL take place in the namespace of the current module. As noted above, the REPL's prompt tells you the name of the current module. To switch to a different one, you can use the command @command{switch-to-geiser-module}, bound to @kbd{C-c C-m}. You'll notice that Geiser simply uses a couple of meta-commands provided by the Scheme REPL (the stock @command{,m} in Guile and @command{,enter} in Racket), and that it doesn't even try to hide that fact. That means that you can freely use said native ways directly at the REPL, and Geiser will be happy to oblige. @cindex current module, change Once you enter a new module, only those bindings visible in its namespace will be available to your evaluations. All schemes supported by Geiser provide a way to import new modules in the current namespace. Again, there's a Geiser command, @command{geiser-repl-import-module}, to invoke such functionality, bound this time to @kbd{C-c C-i}. And, again, you'll see Geiser just introducing the native incantation for you, and you're free to use such incantations by hand whenever you want. One convenience provided by these two Geiser commands is that completion is available when introducing the new module name, using the @kbd{@key{TAB}} key. Pressing it at the command's prompt will offer you a prefix-aware list of available module names. @imgc{mod-completion} Which brings me to the next group of REPL commands. @node Completion and error handling, Autodoc and friends, Switching context, The REPL @section Completion and error handling @cindex completion, module name We've already seen Geiser completion of module names in action at the mini-buffer. You won't be surprised to know that it's also available at the REPL buffer itself. There, you can use either @kbd{C-.} or @kbd{M-`} to complete module names, and @kbd{@key{TAB}} or @kbd{M-@key{TAB}} to complete identifiers. Geiser will know what identifiers are bound in the current module and show you a list of those starting with the prefix at point. Needless to say, this is not a static list, and it will grow as you define or import new bindings in the namespace at hand. If no completion is found, @kbd{@key{TAB}} will try to complete the prefix after point as a module name. REPL buffers use Emacs' compilation mode to highlight errors reported by the Scheme interpreter, and you can use the @command{next-error} command (@kbd{M-g n}) to jump to their location. By default, every time you enter a new expression for evaluation old error messages are forgotten, so that @kbd{M-g n} will always jump to errors related to the last evaluation request, if any. If you prefer a not so forgetful REPL, set the customization variable @code{geiser-repl-forget-old-errors-p} to @code{nil}. Note, however, that even when that variable is left as @kbd{t}, you can always jump to an old error by moving to its line at the REPL and pressing @kbd{RET}. When your cursor is away from the last prompt, @kbd{TAB} will move to the next error in the buffer, and you can use @kbd{BACKTAB} everywhere to go to the previous one. @node Autodoc and friends, Customization and tips, Completion and error handling, The REPL @section Autodoc and friends Oftentimes, there's more you'll want to know about an identifier besides its name: what module does it belong to? is it a procedure and, if so, what arguments does it take? Geiser tries to help you answering those questions too. @cindex autodoc, in the REPL Actually, if you've been playing with the REPL as you read, you might have notice some frantic activity taking place in the minibuffer every now and then. That was Geiser trying to be helpful (while, hopefully, not being clippy), or, more concretely, what i call, for want of a better name, its @dfn{autodoc} mode. Whenever it's active (did you notice that @i{A} in the mode-line?), Geiser's gerbils will be scanning what you type and showing (unless you silent them with @kbd{C-c C-a}) information about the identifier nearest to point. @imgc{repl-autodoc} If that identifier corresponds to a variable visible in the current namespace, you'll see the module it belongs to and its value. For procedures and macros, autodoc will display, instead of their value, the argument names (or an underscore if Geiser cannot determine the name used in the definition). Optional arguments are surrounded by parenthesis. When the optional argument has a default value, it's represented by a list made up of its name and that value. When the argument is a keyword argument, its name has ``#:'' as a prefix. @cindex help on identifier If that's not enough documentation for you, @kbd{C-c C-d d} will open a separate documentation buffer with help on the symbol at point. This buffer will contain implementation-specific information about the identifier (e.g., its docstring for Guile, or its contract, if any, for Racket), and a handy button to open the corresponding manual entry for the symbol, which will open an HTML page (for Racket) or the texinfo manual (for Guile). @cindex module exports @anchor{repl-mod} Geiser can also produce for you a list, classified by kind, of the identifiers exported by a given module: all you need to do is press @kbd{C-c C-d m}, and type or complete the desired module's name. @imgc{repl-mod} The list of exported bindings is shown, again, in a buffer belonging to Geiser's documentation browser, where you have at your disposal a bunch of navigation commands listed in @xref{Documentation browser,,our cheat-sheet}. We'll have a bit more to say about the documentation browser in @xref{doc-browser,,a later section}. @cindex jump, at the REPL If that's still not enough, Geiser can jump, via @kbd{M-.}, to the symbol's definition. A buffer with the corresponding file will pop up, with its point resting upon the identifier's defining form. When you're done inspecting, @kbd{M-,} will bring you back to where you were. As we will see, these commands are also available in scheme buffers. @kbd{M-.} also works for modules: if your point is on an unambiguous module name, the file where it's defined will be opened for you. @node Customization and tips, , Autodoc and friends, The REPL @section Customization and tips @cindex REPL customization The looks and ways of the REPL can be fine-tuned via a bunch of customization variables. You can see and modify them all in the corresponding customization group (by using the menu entry or the good old @kbd{M-x customize-group geiser-repl}), or by setting them in your Emacs initialization files (as a rule, all knobs in Geiser are turnable this way: you don't need to use customization buffers if you don't like them). I'm documenting below a proper subset of those settings, together with some related tips. @subsubheading Choosing a Scheme implementation @cindex scheme implementation, choosing @anchor{choosing-impl} Instead of using the generic @command{run-geiser} command, you can start directly your Scheme of choice via @command{run-racket} or @command{run-guile}. @anchor{active-implementations} In addition, the variable @code{geiser-active-implementations} contains a list of those Schemes Geiser should be aware of. Thus, if you happen to be, say, a racketeer not to be beguiled by other schemes, you can tell Geiser to forget about the richness of the Scheme ecosystem with something like @example (setq geiser-active-implementations '(racket)) @end example @noindent in your initialisation files. @cindex scheme binary @cindex scheme executable path @anchor{impl-binary} When starting a new REPL, Geiser assumes, by default, that the corresponding Scheme binary is in your path. If that's not the case, the variables to tweak are @code{geiser-guile-binary} and @code{geiser-racket-binary}, which should be set to a string with the full path to the requisite binary. @cindex scheme load path @cindex scheme init file @cindex GUILE_LOAD_PATH @cindex PLTCOLLECTS You can also specify a couple more initialisation parameters. For Guile, @code{geiser-guile-load-path} is a list of paths to add to its load path when it's started, while @code{geiser-guile-init-file} is the path to an initialisation file to be loaded on startup. The equivalent variables for Racket are @code{geiser-racket-collects} and @code{geiser-racket-init-file}. @subsubheading History By default, Geiser won't record duplicates in your input history. If you prefer it did, just set @code{geiser-repl-history-no-dups-p} to @code{nil}. History entries are persistent across REPL sessions: they're saved in implementation-specific files whose location is controlled by the variable @code{geiser-repl-history-filename}. For example, my Geiser configuration includes the following line: @example (setq geiser-repl-history-filename "~/.emacs.d/geiser-history") @end example @noindent which makes the files @file{geiser-history.guile} and @file{geiser-history.racket} to live inside my home's @file{.emacs.d} directory. @subsubheading Autodoc @cindex autodoc, disabling @cindex peace and quiet If you happen to love peace and quiet and prefer to keep your REPL's echo area free from autodoc's noise, @code{geiser-repl-autodoc-p} is the customization variable for you: set it to @code{nil} and autodoc will be disabled by default in new REPLs. You can always bring the fairies back, on a per REPL basis, using @kbd{C-c C-a}. @subsubheading Remote connections @cindex port, default @cindex host, default When using @code{connect-to-guile} or @code{geiser-connect}, you'll be prompted for a host and a port, defaulting to localhost and 37146. You can change those defaults customizing @code{geiser-repl-default-host} and @code{geiser-repl-default-port}, respectfully. @c Local Variables: @c mode: texinfo @c TeX-master: "geiser" @c End: