From 1c345e559710ec6200f7d508629bd24457a20a80 Mon Sep 17 00:00:00 2001 From: Jose Antonio Ortega Ruiz Date: Thu, 22 Mar 2001 03:01:01 +0000 Subject: initial import (sf 0.3beta) --- doc/mdk_mixvm.texi | 478 +++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 478 insertions(+) create mode 100644 doc/mdk_mixvm.texi (limited to 'doc/mdk_mixvm.texi') diff --git a/doc/mdk_mixvm.texi b/doc/mdk_mixvm.texi new file mode 100644 index 0000000..8289472 --- /dev/null +++ b/doc/mdk_mixvm.texi @@ -0,0 +1,478 @@ +@node mixvm, gmixvm, mixvm.el, Top +@comment node-name, next, previous, up +@chapter @code{mixvm}, the MIX computer simulator + +@cindex mixvm + +This chapter describes @code{mixvm}, the MIX computer +simulator. @code{mixvm} is a command line interface programme which +simulates the MIX computer (@pxref{The MIX computer}). It is able +to run MIXAL programs (@pxref{MIXAL}) previously compiled with the MIX +assembler (@pxref{mixasm}). The simulator allows inspection of the MIX +computer components (registers, memory cells, comparison flag and overflow +toggle), step by step execution of MIX programmes, and breakpoint +setting to aid you in debugging your code. For a tutorial description of +@code{mixvm} usage, @xref{Running the program}. + +@menu +* Invocation:: Options when invoking @code{mixvm}. +* Commands:: Commands available in interactive mode. +* Devices:: MIX block devices implementation. +@end menu + +@node Invocation, Commands, mixvm, mixvm +@comment node-name, next, previous, up +@section Invoking @code{mixvm} + +@code{mixvm} can be invoked with the following command line options +(note, that, following GNU's conventions, we provide a long option name +for each available single letter switch): + +@example +mixvm [-vhurd] [--version] [--help] [--usage] [--run] [--dump] + [FILE[.mix]] +@end example + +@noindent +The meaning of these options is as follows: + +@defopt -v +@defoptx --version +Prints version and copyleft information and exits. +@end defopt + +@defopt -h +@defoptx --help +@defoptx -u +@defoptx --usage +Prints a summary of available options and exits. +@end defopt + +@defopt -r +@defoptx --run +Loads the specified @var{FILE} and executes it. After the program +execution, @code{mixvm} exits. @var{FILE} must be the name of a binary +@file{.mix} program compiled with @code{mixasm}. If your program does +not produce any output, use the @code{-d} flag (see below) to peek at +the virtual machine's state after execution. +@end defopt + +@defopt -d +@defoptx --dump +This option must be used in conjuction with @code{-r}, and tells +@code{mixvm} to print the value of the virtual machine's registers, +comparison flag and overflow toggle after executing the program named +@var{FILE}. See @xref{Non-interactive mode}, for sample usage. +@end defopt + +When run without the @code{-r} flag, @code{mixvm} enters its interactive +mode, showing you a prompt like this one: + +@example +MIX > +@end example + +@noindent +and waiting for your commands (@pxref{Commands}). If the +optional @var{FILE} argument is given, the file @file{FILE.mix} will be +loaded into the virtual machine memory before entering the interactive +mode. + +@node Commands, Devices, Invocation, mixvm +@comment node-name, next, previous, up +@section Interactive commands + +You can enter the interactive mode of the MIX virtual machine by simply +invoking @code{mixvm} without arguments. You will then presented a shell +prompt + +@example +MIX > +@end example + +@noindent +which indicates that a new virtual machine has been initialised and is +ready to execute your commands. As we have already mentioned, this +command prompt offers you command line editing facilities which are +described in the Readline user's manual (chances are that you are +already familiar with these command line editing capabilities, as they +are present in many GNU utilities, e.g. the @code{bash} shell). As a +beginner, your best friend will be the @code{help} command, which shows +you a summary of all available MIX commands and their usage; its syntax +is as follows: + +@deffn {@code{mixvm} command} help [command] +@deffnx {@code{mixvm} command} ? [command] +Prints a short description of the given @var{command} and its usage. If +@var{command} is omitted, all available commands are described. +@end deffn + +@menu +* File commands:: Loading and executing programs. +* Debug commands:: Debugging programs. +* State commands:: Inspecting the virtual machine state. +@end menu + +@node File commands, Debug commands, Commands, Commands +@comment node-name, next, previous, up +@subsection File commands + +You have at your disposal a series of commands that let you load and +execute MIX executable files, as well as manipulate MIXAL source files: + +@deffn {file command} load file[.mix] +This command loads a binary file, @var{file.mix} into the virtual +machine memory, and positions the program counter at the beginning of +the loaded program. This address is indicated in the MIXAL source file +as the operand of the @code{END} pseudoinstruction. Thus, if your +@file{sample.mixal} source file contains the line: + +@example + END 3000 +@end example + +@noindent +and you compile it with @code{mixasm} to produce the binary file +@file{sample.mix}, you will load it into the virtual machine as follows: + +@example +MIX > load sample +Program loaded. Start address: 3000 +MIX > +@end example + +@end deffn + +@deffn {file command} run [file[.mix]] +When executed without argument, this command initiates or resumes +execution of instructions from the current program counter +address. Therefore, issuing this command after a successful @code{load}, +will run the loaded program until either a @code{HLT} instruction or a +breakpoint is found. If you provide a MIX filename as argument, the +given file will be loaded (as with @code{load} @var{file}) and +executed. If @code{run} is invoked again after program execution +completion (i.e., after the @code{HLT} instruction has been found in a +previous run), the program counter is repositioned and execution starts +again from the beginning. +@end deffn + +@deffn {file command} edit file[.mixal] +The source file @var{file.mixal} is edited using the editor defined in +the environment variable @var{MDK_EDITOR}. If this variable is not set, +the following ones are tried out in order: @var{X_EDITOR}, @var{EDITOR} +and @var{VISUAL}. +@end deffn + +@deffn {file command} compile file[.mixal] +The source file @var{file.mixal} is compiled (with debug information +enabled) using @code{mixasm}. +@end deffn + + +@node Debug commands, State commands, File commands, Commands +@comment node-name, next, previous, up +@subsection Debug commands + +Sequential execution of loaded programs can be interrupted using the +following debug commands: + +@deffn {debug command} next [ins_number] +This command causes the virtual machine to fetch and execute up to +@var{ins_number} instructions, beginning from the current program +counter position. Execution is interrupted either when the specified +number of instructions have been fetched or a breakpoint is found, +whatever happens first. If run without arguments, one instruction is +executed. +@end deffn + +@deffn {debug command} sbp line_number +Sets a breakpoint at the specified source file line number. If the line +specified corresponds to a command or to a MIXAL pseudoinstruction which +does not produce a MIX instruction in the binary file (such as +@code{ORIG} or @code{EQU}) the breakpoint is set at the first source +code line giving rise to a MIX instruction after the specified +one. Thus, for our sample @file{hello.mixal} file: + +@example +* (1) +* hello.mixal: say 'hello world' in MIXAL (2) +* (3) +* label ins operand comment (4) +TERM EQU 19 the MIX console device number (5) + ORIG 1000 start address (6) +START OUT MSG(TERM) output data at address MSG (7) +... +@end example + +@noindent +trying to set a breakpoint at line 5, will produce the following result: + +@example +MIX > sbp 5 +Breakpoint set at line 7 +MIX > +@end example + +@noindent +since line 7 is the first one compiled into a MIX instruction (at +address 3000). In order to @code{sbp} to work, the source file must be +compiled using the @code{-g} flags, which tells @code{mixasm} to include +debug information in the binary @file{.mix} file. +@end deffn + +@deffn {debug command} spba address +Sets a breakpoint at the given memory @var{address}. The argument must +be a valid MIX memory address, i.e., it must belong into the range +@w{[0-3999]}. Note that no check is performed to verify that the +specified address is reachable during program execution. No debug +information is needed to set a breakpoint by address with @code{sbpa}. +@end deffn + +@deffn {debug command} cbp line_no +Clears a (previously set) breakpoint at the given source file line. +@end deffn + +@deffn {debug command} cbpa address +Clears a (previously set) breakpoint at the given memory address. +@end deffn + +@deffn {debug command} cabp +Clears all currently set breakpoints. +@end deffn + +@deffn {debug command} psym [symbol_name] +MIXAL programs can define symbolic constants, using either the +@code{EQU} pseudoinstruction or a label at the beginning of a +line. Thus, in the program fragment + +@example +VAR EQU 2168 + ORIG 4000 +START LDA VAR +@end example + +@noindent +the symbol @code{VAR} stands for the value 2168, while @code{START} is +assigned the value 4000. When MIXAL programs are compiled using the +@code{-g} flag (which tells @code{mixasm} to include debug information +in the binary @file{.mix} file), the symbol table can be consulted from +the @code{mixvm} command line using @code{psym} followed by the name of +the symbol whose contents you are interested in. When run without +arguments, @code{psym} will print all defined symbols and their values. +@end deffn + +The virtual machine can also show you the instructions it is executing, +using the following commands: + +@deffn {debug command} tron +@deffnx troff +@code{tron} enables instruction tracing. When tracing is enabled, each +time the virtual machine executes an instruction (due to your issuing a +@code{run} or @code{next} command), it is printed in its canonical form +(that is, with all expressions evaluated to their numerical values) and, +if the program was compiled with debug information, as it was originally +typed in the MIXAL source file. Instruction tracing is disable with the +@code{troff} command. A typical tracing session could be like this: + +@example +MIX > tron +Instruction tracing has been turned ON. +MIX > next +3000: [OUT 3002,0(2:3)] START OUT MSG(TERM) +MIXAL HELLO WORLD +Elapsed time: 1 /Total program time: 1 (Total uptime: 1) +MIX > next +3001: [HLT 0,0] HLT +End of program reached at address 3002 +Elapsed time: 10 /Total program time: 11 (Total uptime: 11) +MIX > troff +Instruction tracing has been turned OFF. +MIX > +@end example +@noindent +The executed instruction, as it was translated, is shown between square +brackets after the memory address, and, following it, you can see the +actual MIXAL code that was compiled into the executed instruction. +@end deffn + +@code{mixvm} is also able of evaluating w-expressions +(@pxref{W-expressions}) using the following command: + +@deffn {debug command} weval WEXP +Evaluates the given w-expression, @var{WEXP}. The w-expression can +contain any currently defined symbol. For instance: + +@example +MIX > psym START ++ 00 00 00 46 56 (0000003000) +MIX > weval START(0:1),START(3:4) ++ 56 00 46 56 00 (0939716096) +MIX > +@end example +@end deffn + +New symbols can be defined using the @code{ssym} command: +@deffn {debug command} ssym SYM WEXP +Defines the symbol named @var{SYM} with the value resulting from +evaluating @var{WEXP}, an w-expression. The newly defined symbol can be +used in subsequent @code{weval} commands, as part of the expression to +be evaluated. E.g., + +@example +MIX > ssym S 2+23*START ++ 00 00 18 19 56 (0000075000) +MIX > psym S ++ 00 00 18 19 56 (0000075000) +MIX > weval S(3:4) ++ 00 00 19 56 00 (0000081408) +MIX > +@end example +@end deffn + +Finally, if you want to discover which is the decimal value of a MIX +word expressed as five bytes plus sign, you can use + +@deffn {debug command} w2d WORD +Computes the decimal value of the given word. @var{WORD} must be +expressed as a sign (+/-) followed by five space-delimited, two-digit +decimal values representing the five bytes composing the word. The +reverse operation (showing the word representation of a decimal value) +can be accomplished with @code{weval}. For instance: + +@example +MIX > w2d - 01 00 00 02 02 +-16777346 +MIX > weval -16777346 +- 01 00 00 02 02 (0016777346) +MIX > +@end example +@end deffn + +@node State commands, , Debug commands, Commands +@comment node-name, next, previous, up +@subsection State commands + +Inspection and modification of the virtual machine state (memory, +registers, overflow toggle and comparison flag contents) is accomplished +using the following commands: + +@deffn {state command} pc +Prints the current value of the program counter, which stores the +address of the next instruction to be executed in a non-halted program. +@end deffn + +@deffn {state command} preg [A | X | J | I[1-6]] +@deffnx {state command} pall +@deffnx {state command} sreg A | X | J | I[1-6] value +@code{preg} prints the contents of a given MIX register. For instance, +@w{@code{preg} @var{A}} will print the contents of the A-register. When +invoked without arguments, all registers shall be printed: + +@example +MIX > preg +rA: - 00 00 00 00 35 (0000000035) +rX: + 00 00 00 15 40 (0000001000) +rJ: + 00 00 (0000) +rI1: + 00 00 (0000) rI2: + 00 00 (0000) +rI3: + 00 00 (0000) rI4: + 00 00 (0000) +rI5: + 00 00 (0000) rI6: + 00 00 (0000) +MIX > +@end example + +As you can see in the above sample, the contents is printed as the sign +plus the values of the MIX bytes stored in the register and, between +parenthesis, the decimal representation of its module. + +@code{pall} prints the contents of all registers plus the comparison +flag and overflow toggle. + +Finally, @code{sreg} Sets the contents of the given register to +@var{value}, expressed as a decimal constant. If @var{value} exceeds the +maximum value storable in the given register, @math{VALUE mod +MAXIMU_VALUE} is stored, e.g. + +@example +MIX > sreg I1 1000 +MIX > preg I1 +rI1: + 15 40 (1000) +MIX > sreg I1 1000000 +MIX > preg I1 +rI1: + 09 00 (0576) +MIX > +@end example + +@end deffn + + +@deffn {state command} pflags +@deffnx {state command} scmp E | G | L +@deffnx {state command} sover F | T +@code{pflags} prints the value of the comparison flag and overflow +toggle of the virtual machine, e.g. + +@example +MIX > pflags +Overflow: F +Cmp: E +MIX > +@end example + +@noindent +The values of the overflow toggle are either @var{F} (false) or @var{T} +(true), and, for the comparison flag, @var{E}, @var{G}, @var{L} (equal, +greater, lesser). @code{scmp} and @code{sover} are setters of the +comparison flag and overflow toggle values. +@end deffn + +@deffn {state command} pmem from[-to] +@deffnx {state command} smem address value +@code{pmem} prints the contents of memory cells in the address range +@w{[@var{FROM}-@var{TO}]}. If the upper limit @var{to} is omitted, only +the contents of the memory cell with address @var{FROM} is printed, as +in + +@example +MIX > pmem 3000 +3000: + 46 58 00 19 37 (0786957541) +MIX > +@end example + +The memory contents is displayed both as the set of five MIX bytes plus +sign composing the stored MIX word and, between parenthesis, the decimal +representation of the module of the stored value. + +@code{smem} sets the content of the memory cell with address +@var{address} to @var{value}, expressed as a decimal constant. + +@end deffn + +Finally, you can use the @code{quit} command to exit @code{mixvm}. + +@node Devices, , Commands, mixvm +@comment node-name, next, previous, up +@section MIX block devices + +The MIX computer comes equipped with a set of block devices for +input-output operations (@pxref{Input-output operators}). @code{mixvm} +implements these block devices as disk files, with the exception of +block device no. 19 (typewriter terminal) which is redirected to +standard output. When you request an output operation on any other +(output) device, a file named according to the following table will be +created in the current directory, and the specified MIX words will be +written to the file in binary form (for binary devices) or in ASCII (for +char devices). Files corresponding to input block devices should be +created and filled beforehand to be used by the MIX virtual machine (for +input-output devices this creation can be accomplished by a MIXAL +program writing to the device the required data, or, if you prefer, with +your favourite editor). + +@multitable {the device name} { xx-xx } {filename[x-x].dev} {bin i/o } +@item @emph{Device} @tab @emph{No.} @tab @emph{filename} @tab @emph{type} +@item Tape @tab 0-7 @tab @file{tape[0-7].dev} @tab bin i/o +@item Disks @tab 8-15 @tab @file{disk[0-7].dev} @tab bin i/o +@item Card reader @tab 16 @tab @file{cardrd.dev} @tab char in +@item Card writer @tab 17 @tab @file{cardwr.dev} @tab char out +@item Line printer @tab 18 @tab @file{printer.dev} @tab char out +@item Terminal @tab 19 @tab @code{stdout} @tab char out +@item Paper tape @tab 20 @tab @file{paper.dev} @tab char out +@end multitable -- cgit v1.2.3