Installing MDK
**************

Download the source tarball
===========================

   GNU MDK is distributed as a source tarball available for download in
the following URLs:

   * <ftp://ftp.gnu.org/pub/gnu/mdk> (or one of its mirrors
     (http://www.gnu.org/prep/ftp.html))

   * `http://sourceforge.net/project/showfiles.php?group_id=13897'

   The above sites contain the latest stable releases of MDK. The
development branch is available at:

   * `https://savannah.gnu.org/cvs/?group_id=118'

   After you have downloaded the source tarball, unpack it in a
directory of your choice using the command:

     tar xfvz mdk-X.Y.tar.gz

where X.Y stands for the downloaded version (the current stable release
being version {No value for `VERSION'}).

Requirements
============

   In order to build and install MDK, you will need the following
libraries installed in your system:

   - GLIB 1.2.0 (http://www.gtk.org) (required)

   - GNU Flex 2.3 (http://www.gnu.org/software/flex/flex.html)
     (required)

   - GTK 1.2.0 (http://www.gtk.org) (optional)

   - Libglade (ftp://ftp.gnome.org/pub/GNOME/stable/sources/libglade/)
     (optional)

   - GNU Readline
     (http://cnswww.cns.cwru.edu/php/chet/readline/rltop.html)
     (optional)

   - GNU Libguile 1.3 (http://www.gnu.org/software/guile) (optional)

   If present, readline and history are used to provide command
completion and history management to the command line MIX virtual
machine, `mixvm'.  GTK+ and libglade are needed if you want to build
the graphical interface to the MIX virtual machine, `gmixvm'. Finally,
if libguile is found, the MDK utilities will be compiled with Guile
support and will be extensible using Scheme.

   *Please note*: you need both the libraries _and_ the headers; this
means both the library package and the `-dev' package if you do not
compile your libraries yourself (ex: installing `libgtk1.2' and
`libgtk1.2-dev' on Debian).

Basic installation
==================

   MDK uses GNU Autoconf and Automake tools, and, therefore, should be
built and installed without hassle using the following commands inside
the source directory:

     ./configure
     make
     make install

where the last one must be run as root.

   The first command, `configure', will setup the makefiles for your
system. In particular, `configure' will look for GTK+ and libglade,
and, if they are present, will generate the appropiate makefiles for
building the `gmixvm' graphical user interface. Upon completion, you
should see a message with the configuration results like the following:

     *** GNU MDK 0.5 has been successfully configured. ***
     
     Type 'make' to build the following utilities:
         - mixasm (MIX assembler)
         - mixvm (MIX virtual machine, with readline support,
	          with guile support)
         - gmixvm (mixvm GTK+ GUI, with guile support)
         - mixguile (the mixvm guile shell)

where the last lines may be missing if you lack the above mentioned
libraries.

   The next command, `make', will actually build the MDK programs in
the following locations:

   - `mixutils/mixasm'

   - `mixutils/mixvm'

   - `mixgtk/gmixvm'

   - `mixguile/mixguile'

   You can run these programs from within their directories, but I
recommend you to install them in proper locations using `make install'
from a root shell.

Emacs support
=============

   `mixvm' can be run within an Emacs GUD buffer using the elisp
program `misc/mixvm.el', kindly contributed by {No value for `PHILIP'}.

   `mixvm.el' provides an interface between MDK's `mixvm' and Emacs,
via GUD.  Place this file in your load-path, optionally adding the
following line to your `.emacs' file:

     (autoload 'mixvm "mixvm" "mixvm/gud interaction" t)

Special configure flags
=======================

   You can fine tunning the configuration process using the following
switches with configure:

 - User Option: -enable-gui[=yes|no]
 - User Option: -disable-gui
     Enables/disables the build of the MIX virtual machine GUI
     (`gmixvm'). If the required libraries are missing (*note
     Requirements::) the configure script with automatically disable
     this feature.

 - User Option: -with-guile[=yes|no]
 - User Option: -without-guile
     Enables/disables the Guile support for `mixvm' and `gmixvm', and
     the build of `mixguile'.  If the required libraries are missing
     (*note Requirements::) the configure script with automatically
     disable this feature.

 - User Option: -with-readline[=yes|no]
 - User Option: -without-readline
     Enables/disables the GNU Readline support for `mixvm'.  If the
     required libraries are missing (*note Requirements::) the configure
     script with automatically disable this feature.

   For additional, boilerplate configure options, see the
   `Generic configure help' below, or run

     configure --help

Supported platforms
===================

   GNU MDK has been tested in the following platforms:

   * Debian GNU/Linux 2.2/2.3/3.0

   * Redhat GNU/Linux 7.0 (Agustin Navarro), 6.2 (Roberto Ferrero)

   * Mandrake 8.0 (Agustin Navarro)

   * FreeBSD 4.2, 4.3, 4.4, 4.5 (Ying-Chieh Liao)

   * Solaris 2.8/gcc 2.95.3 (Stephen Ramsay)

   * MS Windows 98 SE/Cygwin 1.1.8-2 (Christoph von Nathusius)(1)

   * Mac OS X 10.1.2 (Johan Swanljung)

   MDK will probably work on any GNU/Linux and BSD platform. If you try
it in a platform not listed above, please send a mail to the author
<jao@gnu.org>.

   ---------- Footnotes ----------

   (1) Caveats: Christoph has only tested `mixvm' and `mixasm' on this
platform, using `gcc' 2.95.3-2, `GLIB' 1.2.10 and `GNUreadline' 4.1-2.
He has reported missing history functionalities on a first try. If you
find problems with history/readline functionality, please try a
newer/manually installed readline version.



  ------------------------------------------------------------------------
  ------------------------------------------------------------------------
 
Generic configure help
**********************


Basic Installation
==================

    For more information specific to this package, please read the README
file. This source code distribution  is autoconfiguring and you should be 
able to compile it and install it without manual interventions such as 
editing Makefiles, configuration files, and so on. These are generic 
instructions for people who are not familiar with installing autoconfiguring
software.

The simplest way to compile this package is to enter the source code
main directory and do the following:
   
  1. Configure the source code by typing:
        % sh ./configure

     If you're planning to install the package into your home directory
     or to a location other than `/usr/local' then add the flag
     `--prefix=PATH' to `configure'. For example, if your home directory  
     is `/home/luser' you can configure the package to install itself there
     by invoking:
        % sh ./configure --prefix=/home/luser
     
     While running, `configure' prints some messages telling which
     features is it checking for. 

  2. Compile the package by typing:
        % make
     Running `make' takes a while. If this is a very large package, now
     is the time to go make some coffee.
     
  3. Some packages are bundled with self-tests for source-code 
     verification. If this package includes such tests, you can 
     optionally run them after compilation by typing 
        % make check

  4. Type `make install' to install the programs and any data files and
     documentation. Type `make uninstall' to undo the installation.
     During installation, the following files go to the following directories:
        Executables          -> /prefix/bin
        Libraries            -> /prefix/lib
        Public header files  -> /prefix/include
        Man pages            -> /prefix/man/man?
        Info files           -> /prefix/info
     where `prefix' is either `/usr/local' or the PATH that you specified
     in the `--prefix' flag.

     If any of these directories do not presently exist, they will be
     created on demand. 

     If you are installing in your home directory make sure that 
     `/home/luser/bin' is in your path. If you're using the bash shell
     add this line at the end of your .cshrc file:
        PATH="/home/luser/bin:${PATH}"
        export PATH
     If you are using csh or tcsh, then use this line instead:
        setenv PATH /home/luser/bin:${PATH}
     By prepending your home directory to the rest of the PATH you can
     override systemwide installed software with your own custom installation.

  5. You can remove the program binaries and object files from the
     source code directory by typing `make clean'.  To also remove the
     files that `configure' created (so you can compile the package for
     a different kind of computer), type `make distclean'.

Compiler configuration
======================

   The `configure' shell script is responsible for choosing and configuring
the compiler(s). 

The following options allow you to specify whether you
want to enable or disable various debugging mechanisms:

`--with-warnings'
      Make the compilers very picky about warnings. Try this whenever you
      write new code since it may catch a few bugs. This is not active by
      default because all too often warnings can be too picky and scare
      the end-user.

`--disable-assert'
      Compile without using assertions. This results in faster code,
      but should not be used during developerment, or to run `make check'
      which depends on assertions. It should only be used for production
      runs on code that you believe is bug free.

All programs are compiled with optimization level 2 by default (-O2).
Occasionally that confuses the debugger when code is inlined. To disable
optimization and enable debugging, set the shell environment variables
CFLAGS, CXXFLAGS, FFLAGS to `-g'. On the bash shell, you can do this
like this:
  $ export CFLAGS="-g"
  $ export CXXFLAGS="-g"
  $ export FFLAGS="-g"
On the tcsh shell, use the `setenv' command instead:
  % setenv CFLAGS "-g"
  ...etc...
For other shell, please consult your shell's documentation.

Similarly, you can increase the optimization level by assigning these
variables to "-g -O3". 

The following options allow you to reconsider the `configure' shell script's
choice of Fortran compilers.

`--with-f2c'
      Compile the Fortran code by translating it to C, even if a native
      Fortran compiler is available. A copy of the f2c translator should be
      bundled in the distribution. It will be compiled and then used to 
      compile your Fortran code.
`--with-g77'
      Compile the Fortran code with g77 even if a proprietary Fortran  
      compiler is available
`--with-f77=F77'
      Compile the Fortran code with the specified Fortran compiler.

Depending on what languages the package uses, some of these options may
or may not be available. To see what is available, type:
    % sh ./configure --help

About the configure script
==========================
 
   The `configure' shell script attempts to guess correct values for
various system-dependent variables used during compilation.  It uses
those values to create a `Makefile' in each directory of the package.
It may also create one or more `.h' files containing system-dependent
definitions.  Finally, it creates a shell script `config.status' that
you can run in the future to recreate the current configuration, a file
`config.cache' that saves the results of its tests to speed up
reconfiguring, and a file `config.log' containing compiler output
(useful mainly for debugging `configure').

   If you need to do unusual things to compile the package, please try
to figure out how `configure' could check whether to do them, and mail
diffs or instructions to the address given in the `README' so they can
be considered for the next release.  If at some point `config.cache'
contains results you don't want to keep, you may remove or edit it.

   The file `configure.in' is used to create `configure' by a program
called `autoconf'.  You only need `configure.in' if you want to change
it or regenerate `configure' using a newer version of `autoconf'.

Advanced installation options.
==============================

   The `configure' script also understands the following more advanced
options, to handle situations for which `--prefix' alone is not sufficient.

   You can specify separate installation prefixes for
architecture-specific files and architecture-independent files.  If you
give `configure' the option `--exec-prefix=PATH', the package will use
PATH as the prefix for installing programs and libraries.
Documentation and other data files will still use the regular prefix.

   In addition, if you use an unusual directory layout you can give
options like `--bindir=PATH' to specify different values for particular
kinds of files.  Run `configure --help' for a list of the directories
you can set and what kinds of files go in them.

   If the package supports it, you can cause programs to be installed
with an extra prefix or suffix on their names by giving `configure' the
option `--program-prefix=PREFIX' or `--program-suffix=SUFFIX'.

Optional Features
=================

   Some packages pay attention to `--enable-FEATURE' options to
`configure', where FEATURE indicates an optional part of the package.
They may also pay attention to `--with-PACKAGE' options, where PACKAGE
is something like `gnu-as' or `x' (for the X Window System).  The
`README' should mention any `--enable-' and `--with-' options that the
package recognizes.

   For packages that use the X Window System, `configure' can usually
find the X include and library files automatically, but if it doesn't,
you can use the `configure' options `--x-includes=DIR' and
`--x-libraries=DIR' to specify their locations.

----

$Id: INSTALL,v 1.5 2002/04/08 00:29:59 jao Exp $