1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
|
------------------------------------------------------------------------------
-- |
-- Module: Xmobar.X11.Boxes
-- Copyright: (c) 2022 Jose Antonio Ortega Ruiz
-- License: BSD3-style (see LICENSE)
--
-- Maintainer: jao@gnu.org
-- Stability: unstable
-- Portability: unportable
-- Start date: Fri Sep 16, 2022 04:01
--
-- Borders and boxes
--
------------------------------------------------------------------------------
module Xmobar.X11.Boxes (Line, boxLines, BoxRect, borderRect) where
import qualified Xmobar.Config.Types as T
import qualified Xmobar.Run.Parsers as P
type Line = (Double, Double, Double, Double)
type BoxRect = (Double, Double, Double, Double)
-- | Computes the coordinates of a list of lines representing a Box.
-- The Box is to be positioned between x0 and x1, with height ht, and drawn
-- with line width lw. The returned lists are coordinates of the beginning
-- and end of each line.
boxLines :: P.Box -> Double -> Double -> Double -> [Line]
boxLines (P.Box bd offset lw _ margins) ht x0 x1 =
case bd of
P.BBTop -> [rtop]
P.BBBottom -> [rbot]
P.BBVBoth -> [rtop, rbot]
P.BBLeft -> [rleft]
P.BBRight -> [rright]
P.BBHBoth -> [rleft, rright]
P.BBFull -> [rtop, rbot, rleft, rright]
where
(P.BoxMargins top right bot left) = margins
(P.BoxOffset align m) = offset
ma = fromIntegral m
(p0, p1) = case align of
T.L -> (0, -ma)
T.C -> (ma, -ma)
T.R -> (ma, 0)
lc = fromIntegral lw / 2
[mt, mr, mb, ml] = map fromIntegral [top, right, bot, left]
xmin = x0 - ml - lc
xmax = x1 + mr + lc
ymin = mt + lc
ymax = ht - mb - lc
rtop = (xmin + p0, ymin, xmax + p1, ymin)
rbot = (xmin + p0, ymax, xmax + p1, ymax)
rleft = (xmin, ymin + p0, xmin, ymax + p1)
rright = (xmax, ymin + p0, xmax, ymax + p1)
-- | Computes the rectangle (x, y, width, height) for the given Border.
borderRect :: T.Border -> Double -> Double -> BoxRect
borderRect bdr w h =
case bdr of
T.TopB -> (0, 0, w - 1, 0)
T.BottomB -> (0, h - 1, w - 1, 0)
T.FullB -> (0, 0, w - 1, h - 1)
T.TopBM m -> (0, fi m, w - 1, 0)
T.BottomBM m -> (0, h - fi m, w - 1, 0)
T.FullBM m -> (fi m, fi m, w - 2 * fi m, h - 2 * fi m)
T.NoBorder -> (-1, -1, -1, -1)
where fi = fromIntegral
|