
Self-Protected Mobile Agents

J. Ametller, S. Robles, J. A. Ortega-Ruiz
Department of Computer Science, Universitat Autònoma de Barcelona

08193 Bellaterra - Spain
Joan.Ametller@uab.es

Abstract

In this paper, we present a new solution for the imple-
mentation of flexible protection mechanisms in the context
of mobile agent systems, where security problems are cur-
rently a major issue. In our scheme, agents protect their
code and data by carrying their own protection mecha-
nisms. This approach improves traditional solutions, where
protection was managed by the platform. The implementa-
tion is far from trivial. We have implemented this scheme
in the JADE framework, using Java. Any application using
mobile agents can incorporate these mechanisms to imple-
ment agent protection with a minimum impact in the its ex-
isting code base.

1. Introduction

Mobile agent systems combine the agent and mobile
code development paradigms, incorporating to agent plat-
forms the ability to move computations across the nodes of
a wide area network. However, mobile code systems raise
a well-known set of security issues [5, 7, 2] that have to be
addressed by any platform providing free-roaming mobile
software agents. These security concerns can be classified
in two broad categories, according to whether the agent’s or
the platform’s security is at stake.

On the one hand, host platforms receiving and execut-
ing mobile agents must be protected against malicious code.
Common mechanisms addressing this issue include cryp-
tographic authentication and integrity checks, code sign-
ing and encryption, etc. On the other hand, mobile agents
must protect themselves against hosts trying to tamper ma-
liciously with either the code or the data carried by incom-
ing agents. This issue, known as themalicious host prob-
lem [11, 7], is usually addressed by the introduction of
application-level cryptograhic protocols [6, 10, 9, 8] whose
aim is providing two basic guarantees: confidentiality and
integrity.

Confidentiality issues arise specially in the context of
mobile agents carrying data that must be accessible only
to specific, authorised hosts in their itinerary. For instance,
the hosts in the agent itinerary could be direct competitors
as providers of a resource looked for by the agent (e.g. [2]
discusses the example of an airlines ticket booking agent.)
Besides barring access to reserved information, the roam-
ing agent must also ensure the integrity of the data it car-
ries, i.e., any tampering with pre–existing data must be de-
tected by the agent’s owner and, if possible, other hosts in
the agent’s itinerary.

The aforementioned protocols address the confidential-
ity and integrity problems with different degrees of success,
but, as shown in [10], never in a completely satisfactory
way. In any case, all of them are based on standard cryp-
tographic schemes, often relying on public key infrastruc-
tures, via platform driven protection mechanisms. Unfortu-
nately, this security solutions often rely on a static prospect,
implying the modification of all the involved platforms.

In this paper we present a general software architecture
for the protection of mobile agents, with the aim of min-
imising or even getting rid of some of the main difficul-
ties of existing solutions. Our scheme merges the agent and
platform driven approaches into a flexible method for the
protection of agent’s code and data. Existing cryptographic
protocols can be easily embedded in our solution, avoid-
ing in the process some of their shortcomings. The key
idea of our approach lies in enhancing agents with an inde-
pendent, fully encapsulated protection mechanism carried
by the agents themselves. This security layer interacts with
platforms in very definite circumstances via clear-cut inter-
faces, minimising the impact (in terms of new developments
and legacy code reuse) of adopting the new mechanism or
even modifying the underlying security policies and tech-
niques. This is a telling argument of our approach, for the
infrastructure of platforms becomes tenable. Users must not
learn about security since the mobile agents carry their own
self-protection mechanisms, wrapping the application layer.
Last but not least, domain-specific or home-brewed security
mechanisms can easily coexist with the new architecture.

It is worth stressing that existing agent-based applica-
tions can benefit from this solution. Making mobile agents
secure involves only minor changes to both the platform and
the agent’s code. The new ideas can also be applied to other
innovative concepts such as self-interpreted code or self-
extracting agents.

Finally, we do not limit ourselves to a theoretical spec-
ulation on the benefits of our solution. A fully functional
proof-of-concept implementation of the work described in
this paper (using the well-known JADE agent platform),
briefly discussed in section 5, has been developed by the
authors.

2. Scenario

As we have outlined in the introduction, mobile agent
systems pose numerous security and software engineering
challenges, affecting several areas of their architecture, de-
sign, implementation and deployment. This paper focuses
on the issue of protecting the agent’s data and code against
malicious or unauthorized entities.

Consider the common scenario of a mobile agent fol-
lowing a (possibly pre-established) itinerary through an het-
erogeneous set of agent platforms. At each stage of its
travel, the agent uses the given platform services together
with self-carried code to accomplish its goals. We will be
interested in two immediate issues concerning the agent-
platform interaction, namely

• Security. It is necessary to protect the mobile agent in
terms of privacy and integrity against third-party enti-
ties. Although the agent can, in principle, trust the plat-
forms that it visits (other malicious-host problems [4]
are out of the scope of this paper), only some parts of
the agent code will be used in each platform. In sce-
narios where direct competition between visited plat-
forms exists, it is often desirable that some parts of the
agent’s code and data are visible to just one platform,
and totally unaccessible the other ones.

• Interoperability. Reliance on platform-specific inter-
faces impedes transparent agent migration across het-
erogeneous platforms. Thus, the platform-agent in-
terface should be as simple and generic as possible.
Nonetheless, in the absence of widely accepted, stan-
dardized interfaces, developing multi-platform agents
implies providing adequate means for a clear-cut sep-
aration between agent generic behaviors and platform-
specific code.

Our security requirements can be attained via public key
cryptography. Several proposed schemes [10, 9, 8] already
use public key cryptography to address, among others, some
form of the above security concerns. Despite their differ-
ences, all these schemes share a common underlying sce-

nario. The agent’s originator and each of the platforms in its
itinerary own an asymmetric key pair. The corresponding
public keys are available to any interested party (possibly
by means of a PKI [12]) and standard cryptographic mech-
anisms (like digital signatures and encryption) are used to
protect sensitive information. Thus, any data exchange be-
tween the traveling agent and the platforms it visits can be
protected, either to ensure its integrity (digital signatures)
or to avoid disclosure to third parties (encryption). In addi-
tion, the use of some form of bytecode allows to apply these
security mechanisms also to executable code.

On the other hand, the interoperability requirements are
not as easyly solved. Typically, the implementations of the
above mentioned schemes provide large, non-trivial agent
interfaces to cover all their security requirements. Unfortu-
nately, such overly rich interaction mechanisms force agent
implementors to follow a very concrete security scheme,
even in cases where other protection mechanisms are re-
quired, or where security measures are not needed or desir-
able at all (e.g., for efficiency reasons).

The rest of this paper presents a scheme to satisfy our
security mechanisms without the interoperability shortcuts
that affect current proposals. As we will see, these require-
ments will lead us to a mobile agent architecture based on
public key cryptography and aggressive code-as-data rep-
resentation. A thin, explicit code layer is then in charge of
interpreting this data, after it has been adequately checked
and decrypted. Here, we must face a serious problem, which
in fact challenges the adequacy of the whole proposed so-
lution: how are these cryptographic services provided and
used so that the security of the system is not compromised?
Let us see in more detail where and how this problem arises.

When the agent arrives at one of its target platforms, the
pertinent code and data must be decrypted using the plat-
form’s private key. Obviously, there are only two possibil-
ities as to this task’s responsible: the decryption processis
carried out either by the agent itself or by the platform. Alas,
both scenarios are plagued with serious security and inter-
operability problems:

Platform-driven decryption This is the traditional ap-
proach used by most implementations. The agent’s
data and code to be executed in a given platform is de-
crypted by the platform itself. This scheme is at
odds with our portability requirements, since it con-
strains the agent itinerary to platforms understand-
ing a substantial part of its internal organisation. Any
non-trivial change in the agent’s structure will im-
ply modifications on all target platforms. More-
over, supporting several protection schemes enforces
the platform to distinguish between different agent in-
terfaces.

Agent–driven decryption Agent-based decryption is
probably the best solution from the interoperabil-

ity point of view, in the sense that the interface of-
fered by the platform is minimized: all that is needed
is a function giving access to the private key, and plat-
form implementors are not concerned on any detail of
the internal agent structure. In this way, not only can
agents protected with different cryptographic meth-
ods or unprotected agents live in the same MAS,
but also new protection schemes can be added with-
out modifying the existing platform code. To perform
the decryption activities itself, the agent must gain ac-
cess to the platform’s private key. This option poses
obvious security threats: just think of network snif-
fers, man-in-the-middle attacks and the like. In addi-
tion, third-party malicious code injection in the agent
could modify its behavior and take profit of its access-
ing the platform’s private key to, for instance, obtain
data intended only to the platform at hand.

Thus, we are faced with a seeming conundrum: either
we offer a secure execution environment for our mobile
code (using platform-driven decryption) and seriously hurt
its re-usability and interoperability, or we prime the latter
by moving the relevant operations within the agent, but rais-
ing in so doing unsurmountable security risks. Our aim in
this paper is to offer a way out this dilemma, and to rec-
oncile our apparently contradictory requirements. We will
show how a minimal, standards-based decryption interface,
combined with an appropriated agent architecture, allows
secure mobile code execution, hiding at the same time its
details within the agent code, i.e., not requiring the plat-
form to be aware of the agent internals.

3. Architectural overview

This section presents our proposed solution to the in-
teroperatibility and security problems arising in the mobile
agent scenarios described in section 2. We present a soft-
ware architecture that merges the agent and platform driven
decryption approaches, fully addressing and solving their
discussed shortcomings.

Our solution affects both the agent’s and the platform’s
architecture, but minimises the impact on the latter, foster-
ing its interoperability and ease of adoption by current plat-
form implementations.

As we have seen, the main risk in agent-driven protection
mechanisms is that agents need access to the platform’s pri-
vate key. We can circumvent part of this problem by requir-
ing a cryptographic serviceas part of the platform’s stan-
dard interface. In this way, we avoid direct manipulation of
the private key by agents—but we must also avoid that ma-
licious third-parties use this service to decrypt data stolen
from itinerant agents. Thus, the cryptograhic service inter-
face will incorporate some sort of verification mechanism to

ensure that decrypted data will only be handed to the agent
for which it is inteded.

The cryptographic service can be provided as an add-on
in existing platforms, via either a software service or an au-
tonomous agent, and in a way that minimises the knowledge
of the internal agent structure needed by the platform. To
this end, the mobile agents must be internally (re)structured
according to the following scheme:

• All executable code intended for a given platform will
be wrapped up as data (e.g. as Java bytecode) and en-
crypted, possibly with accompanying pure data, using
the platform’s public key.

• The above data will be transported and handled by ex-
plicit agent code (C) that will use the platform’s cryp-
tographic service to decrypt it.C contains no platform-
specific functionality.

That is, mobile agents will be always structured as a pair
(C, D), whereC is portable, explicit code andD wraps as
data the agent’s specific (and maybe also platform-specific)
behaviour. It is important to stress that this requirement on
the agent’s architecture in no way precludes reuse of pre-
existing agents, since it is easy to make them compliant by
standard software engineering design practices such as the
Adapterpattern [3]. In particular, the data-code split can co-
exist with other architectures already proposed to improve
platfom interoperability.

Having addressed our interoperability concerns, it re-
mains to show how this architecture also ensures the secu-
rity of the whole scheme. Thus, the following section de-
scribes how the agent codeC and the cryptographic service
collaborate to protect the agent’s code and data from exter-
nal attackers.

4. Protection Mechanisms

4.1. Public decrypting function

The main component of the platform’s cryptographic
service will be a public decrypting function. More con-
cretely, letDj = Ekj

(mj) be the result of encrypting the
data chunkmj usingkj , the public key of thejth platform.

As already stated, our goal is to ensure that only the au-
thorised codeC is allowed to call the platform’s decrypt-
ing function onDj, i.e., we must prevent the scenario of a
third party stealing the agent’s encrypted data and using the
cryptographic service to recovermj . To this end,mj will
always include an integrity token,A, computed fromC. In
other words,mj will be a pair of the form(dj , A), where
dj is arbitrary data. The platform’s decrypting function will
then check the presence and validity of the agent’s integrity
token before returning the decrypted data to its caller. Fig-
ure 1 shows the pseudocode for this decryption algorithm.

data decrypt(encrypted_data) {

contents = decrypt(encrypted_data, private_key);

if (data_contents is a pair (d,A) AND
integrity can be successfuly verified with A) {

return d
}
else {

destroy d
error

}
}

Figure 1. Platform decrypting function

4.2. Agent authentication

As shown in section 4.1, the platform decryption service
relies on an agent integrity verification mechanism based
upon an integrity token contained in the encrypted data. The
easiest way of providing this integrity tokenA is to con-
struct it as a cryptographic hash of the agent’s explicit code
C:

A ≡ H(C) (1)

whith H a properly chosen digest function (such as SHA-
1). Under this scheme, we can represent our agent as a pair
(C, D), whereD is split into platform-specific data chunks

D = D1, . . . , Dn (2)

and, for each such chunk

Dj = Ekj
(dj , H(C)), (3)

where we follow the notation of section 4.1.
As a first result, it should be noted that this mecha-

nism fully prevents any attack based on tampering with the
mobile agent codeC in charge of performing the decryp-
tion operations. Figure 2 depicts such an attack, where the
agent’s codeC is modified so that it sends protected data to
an unauthorised third party after it has been decrypted us-
ing the platform’s cryptographic service. Such a modifica-
tion would, however, entail a mistmach between the hash
computed by the platform and that contained inDj, and the
subsequent abortion of the decryption process (cf. figure 1).

4.3. Data protection

The mechanism described so far protects transported
data from agent’s code (malicious) modifications. There ex-
ists, however, a second kind of security threat: injection of
malicious data. We have seen how to protect data from code,
but it remains to show how to protect code from data.

Our architecture allows, in principle, to wrap arbitrary
executable code within the itinerant agent data payloadD.
In this situation, an external attacker could inject mali-
cious code by replacing one of the agent’s data chunks: it

just needs to use both the right hash code (H(C)) and the
plaform’s public key to produce aDj chunk with the ex-
pected format,Ekj

(d′, H(C)), and without any restriction
on its data contentsd′. If C implements a generic algorithm
decryptingDj and blindly executing the code contained in
d′, the attacker will be effectively able to execute arbitrary
code in the platform. In this scenario, the attacker leaves in-
tactC, and is therefore able to forge an apparently valid data
chunkDj .

The key to prevent this kind of attack is to enhanceD

with additional structure, so that its validity can be checked
by C. On behalf of interoperability and reuse, we need an
algorithm that does not depend on the internal structure of
the wrapped up code, allowing in this way an easy adapa-
tion of legacy agents to our general architecture. Let us de-
scribe such a general solution.

To begin with, the agent’s developer generates an key
pair (Pa, Sa) and embeds the public keyPa in the agent’s
explicit codeC (e.g. as a static data member of an appropri-
ate class). Each data chunkdj is then signed using the pri-
vate keySa, and the resulting signaturesj is encrypted to-
gether withdi andH(C) to yield Dj ; that is, we replace
equation (3) by

Dj = Ekj
((dj , sj), H(C)), (4)

where
sj = ESa

(H(dj)). (5)

In addition, the code inC that is in charge of data and
code extraction follows these three steps:

1. Use the platform public decrypting function to extract
(dj , sj) from Dj. This operation will suceed as long as
C has not been modified after the agent creation.

2. Before usingdj , verify sj against it, using the public
keyPa (which is stored within the agent explicit code
C).

3. If the above verification succeeds, usedj . If this data
wraps agent code, it will be executed at this point. If
the verification fails, agent execution will be aborted
and some alternative error handling routine will be
called.

It is easy to show that this mechanism prevents malicious
data injection inside the agent. Suppose that some malicious
entity captures the intinerant agent while it is migrating be-
tween platforms and injects some bogus data withinD, as
described above. When the agent arrives at the platform,
the architectural codeC will extract the injected data, with-
outh any complaint on the platform’s side. But, whenC at-
tempts to use the decrypted data, it detects that this data has
not been signed by the agent’s owner and aborts execution
of the wrapped up code.

1. Extract crypted from D
2. Call CryptoService
3. Decrypt data
4. Execute code decrypted

Agent data D
Agent code C

Agent

1. Extract crypted from D
2. Call CryptoService
3. Decrypt data

5. Execute code decrypted
4. Send decrypted data to A

Agent

PLATFORM

CryptoService

1. D(E(data,hash(C))
2. Is decrypted data
 a pair (m,x) ? yes
3. Extract hash
4. Obtain hash of caller
 agent
5. hashes are equal ?
 No!
6. Destroy data

.......................................

........E(data,hash(C)).
..........E(data,hash(C)).

..

An Attacker A modifies
the code C before
the agent arrives
to the platform

Figure 2. The encrypted hash of the code prevents code modific ation attacks

A more sophisticated attack would be injecting data in-
side the agent and simultaneously alteringC, modifying the
security checking code or the embedded public keyPa. This
modified code could skip the signature verification of the
decrypted data, and directly execute the (presumably ma-
licious) wrapped up code. But we have already seen that
this kind of attack is also doomed to fail: the agent will not
be able to decrypt the tampered data, since its modification
will be detected by the platform’s decrypting function (due
to the fact thatC has been modified.)

5. Implementation

We have implemented the protection mechanisms de-
scribed in this paper as a proof-of-concept add-on toJADE,
a JavaTM-based, FIPA compliant agent platform [1]. Each
JADE agent platform can be split into distributed agent
containers, and inter-container mobility mechanisms are al-
ready in place. Our first prototype extends these mecha-
nisms to incorporate the cryptographic services described
so far, and is part of an on-going effort to provide inter-
platform mobility to JADE.

JADE agents are constructed by composition of so-called
behaviours, which are instances of an abstract interface
(Behaviour) that defines the agent services. Behaviour
instances are an obvious match to our wrapped code data
chunks,dj . Thus, our add-on implements an adapter agent
(ItinerantAgent) that contains the bytecode of be-
haviour implementation instances encapsulated according
to equation (4). This adapter can be readily used to wrap
new or legacy code implementing specific agent behaviours.

The unobtrusiveness of the framework is further en-
hanced via a factory class,ItinerantAgentFactory.
It is worth noting that this factory differs from the well-
known Factory design pattern in that its products are Java

classes, rather than class instances. It takes advantage of
Java’s low level bytecode generation primitives to create on
the fly new classes extending theItinerantAgent with
the public keyPa (section 4.3) embedded as a static data
member. That is, given a (possibly already existent) set of
behaviours,ItinerantAgentFactory creates the re-
quired class adapting them to the code protection mecha-
nism presented in this paper. Therefore, the agent factory
handles the creation of both theC andD components of
the itinerant agent, making the process totally transparent
to JADE application developers.

The platform’s cryptographic service is implemented as
an independent JADE agent (dubbedCryptoAgent), in-
stantiated by each container. TheCryptoAgent is ac-
cessed by itinerant agents via a FIPA-compliant ACL on-
tology, allowing the incorporation of our protection scheme
with minimum fuss.

The implementation is completed with bare-bones
PKI support to handle the creation and distribution
of the required RSA keys and cryptographic mecha-
nisms. Again, these services are implemented as inde-
pendent, FIPA-compliant agents that can be registered in
pre-exisiting JADE platforms without any kind of modifi-
cation.

Summing up, we believe that our current implementa-
tion provides a concrete realization of our interoperability
and reusability claims and strongly backs the viability of
the proposed protection mechanisms.

Currently, further implementation efforts are directed to-
wards a production-grade version of this inter-container
mobility schema, and its upgrade to inter-platform migra-
tion scenarios.

6. Conclusions

Mobile agent protection can be achieved using crypto-
graphic methods. The requisite verification and decryption
tasks can be in charge of either the agent’s code or the host
platform. It has been shown that both platform- and agent-
driven security, present drawbacks and apparently contra-
dictory requirements. This paper has described a new solu-
tion for the protection of mobile agents that is based on a
decryption interface provided by the platform, which is ac-
cessed by properly structured agents. It reconciles opposing
requirements by introducing a hybrid software architecture
that incorporates the advantages of agent driven proposals
while limiting the impact of platform driven approaches.
Interoperability, code reuse and deployment flexibility con-
cerns are also fully addressed.

It should be stressed that even though this work could
seem, at first sight, very specific, a deeper look reveals its
potential to secure most of the currently deployed mobile
agent applications with a very modest implementation ef-
fort. Existing solutions can adopt our architecture with a
minimal development investment, and make the new pro-
tection mechanism coexist with pre-existing ones, if need
arises. Deployment of secure platforms and, therefore, se-
cure mobile agent applications is readily available, without
prohibitive migration costs.

Another appeal of this view is that agents have the abil-
ity to manage their own code and internal structures. Apart
from the obvious advantages of this situation regarding se-
curity, the same scheme can be applied to other common
tasks, such as compression, codification, or interpretation.
Moreover, the re-usability of code makes much easier the
development of secure applications.

The whole scheme has been implemented and tested as
an add-on to the well-known JADE platform, providing a
down-to-earth realization of the proposed mechanisms. This
implementation fosters our confidence in the viability of the
protection scheme.

Future research on this field is envisaged through the def-
inition of new architectures using all these mechanisms, and
the deployment of new applications.

7. Acknowledgments

This work has been funded by the Spanish Ministry
of Science and Technology (MCYT) though the project
TIC2003-02041.

References

[1] Jade, java agent development framework.
http://jade.cselt.it, 2004.

[2] William M. Farmer, Joshua D. Guttman, and Vipin Swarup.
Security for mobile agents: Authentication and state ap-
praisal. InProceedings of the Fourth European Symposium
on Research in Computer Security, pages 118–130, Rome,
Italy, 1996.

[3] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns: Elements od Reusable Object-
Oriented Software. Addison-Wesley Professional Com-
puting Series. Addison-Wesley Publishing Company, New
York, NY, 1995.

[4] F. Hohl. A Model of Attacks of Malicious Hosts Against
Mobile Agents. InProceedings of the ECOOP Workshop
on Distributed Object Security and 4th Workshop on Mobile
Object Systems: Secure Internet Mobile Computations, pages
105–120, INRIA, France, 1998.

[5] W. Jansen and T. Karygiannis. Nist special publication 800-
19 - mobile agent security, 2000.

[6] Neeran M. Karnik and Anand R. Tripathi. Security in the
Ajanta mobile agent system.Software Practice and Experi-
ence, 31(4):301–329, 2001.

[7] Chess David M. Security issues in mobile code systems.
In Mobile Agents and Security, volume 1419, pages 1–14.
Springer Verlag, 1998.

[8] J. Mir and J. Borrell. Protecting mobile agent itineraries. In
Mobile Agents for Telecommunication Applications (MATA),
volume 2881 ofLecture Notes in Computer Science, pages
275–285. Springer Verlag, October 2003.

[9] S. Robles, J. Mir, and J. Borrell. Marism-a: An architecture
for mobile agents with recursive itinerary and secure migra-
tion. In 2nd. IW on Security of Mobile Multiagent Systems,
Bologna, July 2002.

[10] V. Roth. Empowering mobile software agents. InProc. 6th
IEEE Mobile Agents Conference, volume 2535 ofLecture
Notes in Computer Science, pages 47–63. Spinger Verlag,
2002.

[11] Volker Roth. On the robustness of some cryptographic pro-
tocols for mobile agent protection.Lecture Notes in Com-
puter Science, 2240:1–??, 2001.

[12] B. Schneier. Applied Cryptography. John Wiley & Sons,
New York, 1996.

