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Chapter 1

Introduction

1.1 Historical context

The General theory of Relativity, proposed by A. Einstein in 1916 [44], supposed a

breakthrough in our conceptual understanding of physical phenomena and their interre-

lationship with space and time. The new, active part played by space–time in the de-

scription of gravitational interactions demanded not only a radical departure from Newto-

nian conceptions, but also the introduction of a new mathematical language—differential

geometry—which eventually spread across many other branches of fundamental physics.

General Relativity offered a theoretical framework of great conceptual richness, which

was the outcome of basically only three clear–cut, elegant principles: general covariance,

principle of equivalence and geodesic postulate. In his seminal work of 1916, Einstein also

presented observational implications of General Relativity, explaining the well–known but

ill–understood anomalies in the motion of the perihelion of Mercury, and predicting new

phenomena—bending of light rays—which soon had a striking experimental confirma-

tion in Eddington’s observations of solar eclipses [40, 99]. A third effect predicted by

Einstein—red shift of spectral lines—also received partial confirmation from experiment

in those early years [99], although it was not unambiguously observed until the experi-

ments of Pound and Rebka in the sixties [100]. These three effects conform the so–called

classical tests of General Relativity.

In spite of its initial success, observational General Relativity fell in what has been

called a ‘hibernation’ period between 1920 and 1960. While theorists were faced with

mathematical complexity of the non–linear Einstein equations, the field of experimental
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gravitation seemed to be exhausted. For, their conceptual divergency notwithstanding,

Einstein’s and Newton’s theories lead to virtually the same predictions when dealing

with weak gravitational fields, such as the Earth’s or the Solar system’s. Apart from

the aformentioned three classical effects, relativistic corrections to Newtonian mechanics

laid far beyond observation.

Among these ‘unobservable’ consequences of General Relativity was one more of Ein-

stein’s earlier predictions: the existence of gravitational waves, ensuing from the finite

velocity of propagation of gravitational interactions. As he himself pointed out [45, 46],

the linearized equations of the gravitational field admit radiative solutions, analogous

to those describing electromagnetic waves in Maxwell’s theory, and propagating with

the velocity of light. Einstein was also able to show that gravitational waves have two

physical degrees of freedom and to compute the power radiated by non–self–gravitating,

slow–motion masses. This calculation made evident the extreme weakness of any likely

gravitational waves bathing the Earth from any astronomical source known at that time,

and put out of the question their generation in laboratory. Thus, this subject became

exclusively a matter of theoretical discussion for many years. Weyl [128] and Eddington

[42] elaborated on Einstein’s initial work, giving a full description of the linear theory

of gravitational waves by the mid twenties. The issue of radiation emission by self–

gravitating systems was first tackled successfully by Landau and Lifshitz in 1941 [73].

It was not until the work by Bondi [17] in 1957 that gravitational waves were generally

accepted as a potentially measurable physical phenomenon, implying energy transport,

instead of the mere coordinate effect suggested by other authors. Later work in the six-

ties, due largely to Hartle and Brill [19] and to Isaacson [65, 66], finally provided a solid

mathematical basis to describe the energy transport by gravitational waves.

It was at this period that Weber started his pioneering work on resonant gravitational

wave detectors. His original idea [122] was to measure the oscillations induced in a rigid

solid by a passing gravitational wave. After making a first attempt at a theoretical de-

scription of the interaction between elastic solids and weak gravitational radiation [123],

Weber undertook to set up an actual resonant antenna at the University of Maryland. It

consisted of a 1.2 ton aluminium bar at room temperature, whose vibrations were mon-

itored with the aid of piezoelectric transducers. Observations were performed with this

single antenna during the period 1963–1968 [124, 125], and, afterwards, a second cylin-

der at the Argonne National Laboratory of Chicago permitted coincidence experiments

between the opposite ends of a 1000 km baseline. In 1969, Weber announced positive

results of these experiments [126]. This gave rise to great excitement, which translated
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Experiment Location Mass (kg) T (K) Date Sensit.

CRAB Tokyo 1200 4.2 1991 2 × 10−22

EXPLORER Geneva 2300 2.5 July 90 7 × 10−19

NAUTILUS Rome 2300 0.1 94–95 3×10−18

ALTAIR Rome 390 4.2 - -

AURIGA Legnaro 2300 0.1 1995 -

ALLEGRO Louisiana 2300 4.2 June 91 7 × 10−19

NIOBE Perth 1500 4.2 June 1993 7 × 10−19

Moscow Univ. Moscow 1500 290 1993 7 × 10−17

Table 1.1. Resonant cylindrical antennæ worldwide. We give the mass of the

detector, its operating temperature, the date since they are taking data and their

sensitivity in terms of the minimum detectable gravitational wave amplitude for

a 1 ms burst. The high sensitivity of the CRAB antenna is attained only for

monocromatic sources.

into the construction of cylindrical bar antennæ by other groups, aimed at the confir-

mation of Weber’s observations. In the end, however, none of the groups operating with

detectors of Weber’s type could report evidence on the existence of gravitational waves

[52, 36, 13]. These negative results, together with astronomical observations, made clear

the need of technological improvements in the antenna design in order to attain higher

sensitivities. Thus, in the late seventies, other experimental researchers got involved in

building ‘second generation’ gravitational antennæ, which offered better performance by

means of three important improvements. First, the use of cryogenic techniques allowed

lowering the temperature of the bars down to 4 K. In second term, the suspension sys-

tem and vibration isolation of the antennæ were carefully redesigned. And, finally, the

introduction of resonant transducers matched to the normal vibrations of the cylinder,

and the use of low noise amplifiers, greatly improved the readout system. During the

eighties, these second generation detectors were perfected, and nowadays there are sev-

eral resonant bars worldwide (see table 1.1), taking data for sustained periods of time

and even operating in coincidence.

A second type of detectors were also considered in the seventies, namely, laser–

interferometer detectors. The first, small–scale prototype was constructed by Forward in
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1972 [49], and by the mid eighties improved prototypes were also constructed in Munich,

Glasgow, Caltech and MIT, working at amplitude sensitivities around 2000 times better

than that of Forward’s first prototype.

In spite of this great technological effort, gravitational waves have not yet been de-

tected by means of Earth–based detectors. Nevertheless, Hulse and Taylor’s observations

of the binary pulsar PSR B1913+16 since its discovery in 1975[63] have provided the first

experimental confirmation of some of the predictions of gravitational wave physics. PSR

1913+16 is a binary system where relativistic effects are within experimental range. In

fact, the decay of its orbital period, owing, according to General Relativity, to emission

of gravitational radiation, can be directly measured. Comparison of the observed values

with the predicted delay due to gravitational wave emission, shows that Einstein’s the-

ory passes the test with a fractional accuracy better than 0.4%. The clock–comparison

experiment for PSR 1913+16 thus provides direct experimental proof that changes in

gravity propagate at the speed of light, thereby creating a dissipative mechanism in an

orbiting system [115, 64].

The strong experimental evidence provided by Hulse and Taylor’s observations on

the existence of gravitational waves suggests that the negative results of present gravi-

tational wave antennæ ensue from their being not sensitive enough. Therefore, further

improvements are needed in order to reach the required sensitivities. Projected large–

scale Earth–based interferometers LIGO [1] and VIRGO [53] having km–long arms, or

the ambitious space–based interferometer project LISA [106] would, if finally made op-

erative, be able to detect gravitational radiation bathing the Earth according to current

theoretical views. On the other hand, resonant detectors are also expected to push for-

ward their sensitivity threshold with the aid of ultracryogenics and SQUID technologies.

There is, however, a different way of making a step further in order to improve the

sensitivity of resonant detectors: the introduction of a better suited geometry, namely,

spherical geometry.

Spherical detectors were soon recognized by Forward [48] to offer better detection

capabilities than cylindrical bars: they are omnidirectional and have at least five modes

of vibration coupling to gravitational waves. Further theoretical work by Wagoner and

Paik [119] also showed that the sensitivity of a sphere is slightly better than that of a

cylinder of equal mass. However, the possibility of building spherical resonant antennæ

was disregarded by experimental researchers until the last decade. Currently, though,

the experience accumulated over more than 25 years of development work with cylinders

has given the experimentalists the necessary confidence to reconsider the spherical an-
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tenna project. As a matter of fact, a number of groups worlwide are currently commited

to a development of spherical gravitational wave detectors, from both theoretical and

experimental points of view. Also, small prototypes of truncated icosahedral detectors

have been already built and operated at room temperature at Lousiana State Univer-

sity. When finally operative, spherical detectors would moreover offer the possibility of

interesting coincidence experiments with other types of detector.

Summing up, spherical resonant gravitational detectors appear as a promising, feasi-

ble and challenging possibility of direct detection of gravitational waves in the near, or

at least not too distant, future.

1.2 Overview of this essay

The aim of this thesis is to contribute to the development of spherical resonant gravi-

tational wave antennæ from a theoretical point of view. If we are to monitor the sphere’s

surface displacements searching for gravitationally induced disturbances, the first ques-

tion to address is what will these displacements look like. A short, theoretically–minded

answer is: the sphere’s displacements will be given by the solution of the requisite equa-

tions of motion.

Within the framework of General Relativity, these equations are obtained from the

generalized conservation law for the energy–momentum tensor describing the solid. The

problem of determining this tensor for elastic and viscoelastic solids has been extensively

treated in the literature [97, 87, 22]. As the stresses into a rigid solid are the outcome

of the changes in the distance between its particles, care must be taken to define in

a covariant way the state of deformation of the body at hand. Once this has been

acomplished, we can write down the conservation equation in the weak field limit—for we

expect any gravitational wave reaching the Earth to be extremely weak—, and in terms

of coordinate displacements—for these are the quantities to be eventually measured in an

experimental layout. Owing to the non–tensorial character of coordinate position, the

final equations of motion are not gauge invariant. For instance, when spelled out for a

TT system, the take the form of those of a free Newtonian solid. This fact has lead some

authors to the conclusion that gravitational waves do not couple with homogeneous rigid

solids [39, 23]. We argue, however, that a better suited coordinate sytem to describe our

actual measurements is the well–known normal frame. It is shown that in such a system

the effect of a passing gravitational waves shows as a tidal driving term in the Newtonian



12 Chapter 1. Introduction

equations of motion.

Admittedly, the question of whether the quasi–Minkowskian normal frame actually

describes our experimental layouts is an open one; but we shall not go into a detailed

discussion of this issue here. Rather, we assume in the following that the “correct” form

of the equations of motion is the one obtained in this frame, and analyse the conse-

quences ensuing from such assumption. As is often the case with theoretical controversy,

experience will eventually provide a check on our conceptions.

Hence, not very surprisingly, the study of the behaviour of viscoelastic solids acted

upon by gravitational waves demands an analysis of their Newtonian equations of motion,

which we undertake in chapters 3 and 4. The problem of determining the normal modes

of vibration of an elastic solid sphere is among the classical ones in elasticity treatises

(see, e.g. [80]), but we offer a thorough analysis of this issue in modern notation, and

extend classical results to the interesting case of a hollow sphere. A complete study of

the assymptotic properties of the spectrum of spherical bodies is also given. Moreover,

we take advantage of the theory of linear operators in Hilbert spaces to reformulate the

problem in a compact and elegant form. This allows an easier handling of the somewhat

cumbersome algebra involved, and also our original perturbative treatment of the small

deviations from spherical symmetry originating in the suspension of the detector in the

terrestrial gravitational field. Closed expressions for the perturbations of the spectrum

are found for an arbitrary surface suspension. Finally, by way of example, we explicitly

compute the threefold splitting of the fundamental mode of a sphere hung by means of

axisymmetric tensions applied on a small circular cap.

Real bodies are not perfectly elastic, though. They undergo dissipative processes

transforming ordered, macroscopic motions (such as normal vibrations) into disordered,

molecular motion (that is, heat). This process is sometimes modelled introducing, by

hand, a damping factor exp(−ωt/Q) in the periodic time–dependence of elastic normal

modes. This approach demands the introduction of experimental values of the quality

factor Q at each frequency considered, as they provide no means to their calculation

from a finite set of parameters characterizing the solid. In chapter 4, we overcome this

problem by the introduction of a theoretical model describing both the elastic behaviour

of the small deformations of the solid, and the dissipation processes which it undergoes.

The classical theory of viscoelasticity offers a wide variety of possible models, each one

starting from a given constitutive relationship between the stress and strain tensors. We

solve in detail the simplest ones for the solid sphere, assuming small viscosity (i.e. high

quality factor). We show that the viscoelasticity equations of motion for these models
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admit free solutions with the time dependence exp(−ωt/Q) sinωt, where ω is a frequency

of the elastic solid’s spectrum.

The explicit form obtained for Q as a function of frequency opens the possibility of

experimental checking of the proposed models, because the quality factor has an imme-

diate observational meaning—it gives the mechanical bandwith of the solid’s vibrations.

Moreover, we show how the simple models dealt with can be generalized to more sophis-

ticated ones, in case the former would be found unsuitable to fit actual measurements.

In any case, they provide a theoretical framework encompassing both the elastic and

viscous properties of rigid bodies, allowing thus a rigourous treatment of the effect of

gravitational waves on real bodies.

In chapter 5, we finally address the problem of solving the equations of motion of

(visco)elastic solids acted upon by a driving force. Our objective is twofold. First of

all, explicit expressions for the displacements ensuing from the interaction between a

(visco)elastic solid and a external general force are given. Spelling out these expressions

for a tidal driving force, we obtain a precise description of the kind of deformations that

we should expect as the outcome of a passing gravitational wave. In second term, the

power absorbed by the solid can be directly computed, and, thence, we can obtain the

absorption cross–section, σabs, of spherical gravitational wave detectors. This concept—

a familiar one in many branches of physics; e.g., scattering of electromagnetic waves or

neutron absorption— provides a quantitative measure of the detector’s sensitivity.

Two properties of our solution to the equations of motion are worth noting. Elastic

and Kelvin–Voigt viscoelastic solids undergo forced displacements which can be expressed

in terms of purely elastic normal modes, regardless the concrete form of the driving force.

On the other hand, when specializing to a tidal one, we find that gravitational waves

can possibly excite only quadrupole spheroidal modes with polarization m = ±2, this

fact allowing the possibility of strong experimental vetoes on the correctness of General

Relativity.

In our subsequent study of the solid sphere’s sensitivity, we recover the known results

regarding its good performance at the fundamental mode. But also special attention is

paid to the potential use of spherical bodies as a two–frequency detector, a possibility

overlooked in previous work on the subject. As we have already pointed out in [27],

the sphere’s sensitivity at is second quadrupole frequency is still higher than that of a

cylinder’s fundamental mode operating in the same frequency range. In fact, for typical

bars, the corresponding sphere having the same fundamental frequency has an energy

sensitivity over 20 times better, and its second mode absorbs over 15 times more energy
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than the fundamental mode of the cylinder—always assuming optimal orientation of the

latter.

It is also shown how the good sensitivity of the sphere at its second mode can be

used to reduce the number of components of a xylophone of spherical detectors aimed at

wideband coverage.

To close the list of the advantges offered by spherical geometry, we must mention

the sphere’s omnidirectionality, and its having five modes at each frequency coupling

to gravitational waves. These properties are not shared by single cylidrincal detectors

or interferometers. Multiple arrays of such detectors are needed to meet the properties

which a single sphere has on its own.

On the other hand, hollow spheres present new capabilities on their own. Although

their sensitivity is always below that of a solid sphere of equal mass at its fundamental

mode, we have discovered that the cross–section of a hollow sphere’s second mode in-

creases with the ratio between its inner and outer radii. Indeed, the detector’s sensitivity

becomes larger at the second mode than it is at the first. It always keeps below that of a

solid sphere, but we have the additional advantage that, for a given mass, thinner shells

have lower resonance frequencies. It is shown that a thin hollow sphere can operate with

high sensitivity at a (remakably low) frequency of 200–300 Hz and at a frequency around

1 kHz. This opens the possibility of resonant detectors operating at low frequencies,

typically covered by interferometers, and, therefore, of coincidence experiments between

the two types of antenna.

The last chapter of this thesis briefly touches on some issues which lay somewhat out

of its natural scope, but which are nevertheless of great practical importance. Thus, the

chapter opens with a brief discussion of the deconvolution problem for spherical detec-

tors, following previous work by Wagoner and Paik [119]. It is shown that measurements

taken at five points of the antenna’s surface allow, assuming General Relativity, the

determination of the gravitational wave incidence direction and of its ‘plus’ and ‘cross’

amplitudes up to a polarisation angle. In section 6.2 we discuss how a two–sphere ob-

servatory provides this missing information, and how it can be used to determine the

velocity of propagation of gravitational waves. Chapter 6 closes with a brief catalogue

of likely sources of gravitational radiation and a discussion of their detectability by a

spherical antenna. Specially interesting is the ability of a thin shell to monitor coalescing

binaries at two frequencies of their inspiralling motion, which would provide a way of

computing the coalescence time of such systems.

Finally, we have collected in appendices A and B some lengthy algebra appearing
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in the derivations of chapters 3 through 5, while appendix C gives the description and

source code of a C–library developed to perform the numerical work needed in many

calculations (e.g., computation of eigenfrequencies, calculation of sensitivities, etc.).

1.3 Notation and linear gravitational waves

Through this essay we shall use the following notation.

- Four–dimensional magnitudes will be typed in italics, with greek indices ranging from

0 to 3; e.g. uµ, Aαβ
µν , etc.

- The metric tensor of space–time is denoted gµν , and has signature -+++. Minkowski’s

metric is denoted ηµν = diag{−1, 1, 1, 1}.

- Partial differentiation with respect to xµ is denoted ∂/∂xµ, ∂µ or by means of a sub-

script (,µ).

- Lie derivative with respect a vector field uµ is denoted Lu.

- Covariant differentation is denoted by ∇µ or a semicolon ;µ.

- Parenthesis indicate symmetrization, e.g. A(µν) ≡ (Aµν +Aνµ)/2.

- Boldface letters denote three–dimensional Cartesian vectors; e.g. x, s. Cartesian vector

indices are denoted by latin letters (i, j, ...), and are raised and lowered with the

diagonal metric δij = δij = diag{1, 1, 1}.

- ∇, without subindices, denotes the Cartesian nabla operator, i.e. ∇ ≡ (∂x, ∂y, ∂z).

- Einstein summation convention is used. For Cartesian tensors, contraction is indicated

by covariant indices; e.g. skk denotes summation over the repeated index k.

- Levi–Civita’s totally skewsymmetric tensor is denoted ǫijk, with ǫ123 ≡ 1.

- Cartesian dot product: a · b ≡ aibi.

- Cartesian vector product: (a × b)i ≡ ǫijkajbk.

- c is the velocity of light, and G the Newtonian gravitational constant.
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We shall also assume that gravitational waves are correctly described by the linearized

Einstein equations. We give here a very brief review of the standard theory [127, 93, 121].

In a properly chosen coordinate system, gravitational radiation appears as a linear

deviation hµν from flat space–time:

gµν(x) = ηµν + hµν(x) , |hµν(x)|≪1 (1.1)

Here hµν satifies the linearized Einstein equations

2h̄µν − h̄ σ
µ ,σν − h̄ σ

ν ,σµ + h̄ρσ
,ρσ ηµν = −16πG

c4
Tµν (1.2)

where

h̄µν ≡ hµν − 1

2
h ηµν , h ≡ ηµν hµν (1.3)

and Tµν denotes the source’s energy–momentum tensor. These equations are invariant

under first–order coordinate transformations preserving (1.1). These are of the form

x′µ = xµ + ǫµ(x) (1.4)

where ∂νǫ
µ(x) = o(h). Gauge freedom can be used to impose a supplementary condition

on hµν . We shall always use the Hilbert gauge

h̄µν
,ν = 0 (1.5)

for which the equations of motion reduce to the wave equation

2h̄µν = −16πG

c4
Tµν (1.6)

We have still the possibility of further gauge transformations leaving invariant equa-

tions (1.5) and (1.6). They are given by any set of functions ǫµ(x) satisfying 2ǫµ = 0. In

the absence of sources, it can be shown that it is always possible to choose a coordinate

system (the transverse–traceless, or TT–system) in which the gravitational wave reduces

to the canonical form:

hµν(x, t) =













0 0 0 0

0 h+(x, t) h×(x, t) 0

0 h×(x, t) −h+(x, t) 0

0 0 0 0













(1.7)



Chapter 2

Interaction of gravitational waves

with elastic and viscoelastic bodies

2.1 Introduction

The use of elastic resonant detectors of gravitational radiation demands a thorough

analysis of the way in which an impinging gravitational wave interacts with the elas-

tic antenna. Thus, a generalization of the classical theory of elastic media within the

framework of General Relativity is needed, once the mathematical description of (weak)

gravitational waves has been stated. Such generalization has been carried through by

several authors (see [22, 23, 61, 85, 97, 113], and references therein), with different levels

of mathematical rigour, but leading to the same equations of motion for a solid elastic

body which undergoes small deformations in the presence of gravitational fields. We

present here a brief survey of these theories, stressing their application to the case of

weak gravitational fields, and the physical interpretation given to the resulting equations

of motion in terms of measurable displacements.

The resonant detectors are not perfectly elastic bodies, and they undergo dissipation

processes which damp their elastic vibrations. This internal friction is modelled classically

by means of the so–called viscoelastic models, which combine the elastic properties of

deformable solids with that of a viscous flow. We present a brief review of the classical

theory, and generalize it to the relativistic case of interaction with a gravitational wave.
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2.2 Classical theories

2.2.1 Classical elasticity

In the Newtonian theory of elasticity [98, 80], the state of strain of a deformable body

is described by the strain tensor, sij , which gives the change in the distance between two

close particles of the elastic medium after deformation. Thus, if x and x + dx are the

positions of two particles of the medium before deformation, their distance being then

ds2 = dxidxi, after deformation the distance between them will be

ds′2 = ds2 + 2 sijdxidxj . (2.1)

When using cartesian coordinates, if s(x) is the field of displacements (i.e., the position

of the particle changes from x to x + s) the strain tensor is given, up to second order in

s, by

sij = s(i,j). (2.2)

On the other hand, the dynamics of the body is described by its stress tensor, σij , σijnj

being the force per unit area acting on a surface element with normal n. Due to angular

momentum conservation, σij is symmetric. The equations of motion are then

ρ
∂2si

∂ t2
=
∂σij

∂ xj
+ fi, (2.3)

f being the force per unit mass due to external fields acting on the elastic body. The

above system of partial differential equations is subjected to the following boundary

conditions on the surface of the elastic body:

σijnj = Sj , (2.4)

where S stands for the surface tractions on the body’s surface. In order to have a system

of differential equations for the displacements, a relation between stress and strain must

be set. Most materials show a linear dependence (Hooke’s law) of the form

σij = Clm
ij slm, (2.5)

where Clm
ij are constants with the following symmetries:

Clm
ij = Cij

lm = Cji
lm, (2.6)

known as Voigt symmetries in the literature. Thus, a linear elastic body is in gen-

eral characterized by 21 independent parameters. In the special case of homogeneous,
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isotropic media, only two constants, the Lamé coefficients, are needed, and Hooke’s law

has the simple form

σij = λ skkδij + 2µ sik. (2.7)

Then, the equations of motion can be written

ρ
∂2s

∂ t2
= (λ+ µ)∇(∇ · s) + µ∇2s + f , (2.8)

with boundary conditions:

λ(∇ · s)n + 2µ(n · ∇)s + µn× (∇× s) = S, (2.9)

to be satisfied on the body’s surface, which has normal vector n.

2.2.2 Classical viscoelasticity

The theory of deformable solids presented in the previous section takes into account

only purely conservative processes, and no energy loses are allowed by the equations of

motion. The total mechanical energy is conserved, and transformations between poten-

tial elastic energy and kinetic energy are the only energy transfers permitted within the

framework of classical elasticity. In fact, the theory of linear elasticity can be concep-

tually viewed as a generalization of Hooke’s law for one–dimensional springs to three–

dimensional continua. Following this parallelism, we shall consider one–dimensional me-

chanical models presenting internal friction which will be later generalized to describe

rigid solids undergoing dissipation, giving rise to the so–called viscoelastic models for

deformable solids [16, 31, 60]. While the elastic component of our mechanical model

will be a linear spring satisfying Hooke’s law, the internal friction shall be modelled by

a dashpot (see figure 2.1), that is, a piston immersed in a viscous fluid giving rise to a

frictional force proportional to velocity. Thus, if s stands for the displacement of the

piston when a uniaxial tension σ is applied to the free ends of the dashpot, the following

equation holds:

σ = ηṡ, (2.10)

where a dot denotes time derivative, and η is a parameter characterizing the dashpot’s

viscosity. The spring shall be characterized by the restitution constant E appearing in

Hooke’s law, which, in terms of the spring’s elongation s when it is under a tension σ, is

written as:

σ = E s. (2.11)
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Figure 2.1. One–dimensional mechanical models for linear viscoelastic solids.

Their building blocks are the Hookean spring and the viscous dashpot represented

in figure (a). Figure (b) represents the Maxwell model, in (c) the Kelvin–Voigt

model is depicted, and figure (d) shows the Standard Linear Model.

In order to build a one–dimensional viscoelastic model, the aforementioned compo-

nents can be combined in a variety of ways. We shall limit ourselves here to the three

simplest models (Kelvin-Voigt, Maxwell and Standard Linear Model), which are repre-

sented in figure 2.1. Our aim will be to obtain an equation relating the stress and strain

tensors (known as constitutive equation), which will play the part of the linear Hooke’s

law (2.7) for elastic bodies.

The Maxwell model consists of a dashpot in series with a spring. When a tension is

applied to the free ends of the spring and the dashpot, it is instantaneously deformed

(elastic response); if the tension is mantained, the deformation increases due to the

viscous flow of the piston in the dashpot. Thus, this model has the capability of unlimited

deformation under finite stress, and it would be not suitable for describing real solids

under constant stress. Nevertheless, when free vibrations are considered, the model

presents sensible properties, as we shall see in chapter 4, where it is applied to a solid
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sphere (see [55] for an extensive analysis of the properties of this and the following models

in the one–dimensional case). The total displacement of the model, s, will be given by

addittion of the dashpot’s and the spring’s displacements (say se and sd), so that the

constitutive equation for a Maxwell solid is given by

ṡ = ṡe + ṡd = E−1σ̇ + η−1σ. (2.12)

The corresponding generalization to a three-dimensional solid is readily obtained from

the above equation:

∂tσij +Dlm
ij σlm = Clm

ij ∂tsij , (2.13)

where Clm
ij and Dlm

ij are constant tensors with the Voigt symmetries (2.6). Thus, a

Maxwell solid will be parametrized by 42 coefficients. In the special case of isotropy and

homogeneity, the number of independent parameters reduces to four, and the constitutive

equation can be written as

∂tσij + ασkkδij + β σij = ∂t

(

λ skk δij + 2µ sij

)

, (2.14)

where, besides the usual Lamé coefficients, we have introduced two new positive con-

stants, α and β, describing the effects of internal friction.

The second model to be considered consists of a dashpot in parallel with a spring

(figure 2.1(c)), and is known in the literature as the Kelvin–Voigt model. A constant

strain applied to its free ends produces no instantaneous elastic response, due to the

presence of the dashpot, but an asymptotically constant elongation which is recovered

after an eventually infinite time lapse since the tension is removed (such viscoelastic

contraction is not present in the Maxwell model). To obtain the constitutive equation

for this model, one simply needs to take into account that the total stress σ is given by

the addition of the tensions at which each element is submitted, while both undergo the

same displacement. Thus,

σ = σe + σd = E s+ η ṡ, (2.15)

and the corresponding constitutive relation between the stress and strain tensors of a

Kelvin-Voigt three–dimensional solid shall take the form

σij =
(

Clm
ij + C′lm

ij ∂t

)

slm, (2.16)

where, again, the constant tensors Clm
ij and C′lm

ij both satisfy equation (2.6). Their 42

independent components are reduced to 4 for an isotropic, homogeneous body, whose
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constitutive equation can be written as

σij = (λ+ λ′∂t) skkδij + 2 (µ+ µ′∂t) sij , (2.17)

the new positive constants λ′ and µ′ describing the effects of viscosity.

We shall still consider a third model, consisting of three elements: two springs and

a dashpot. It is called Standard Linear model (or three–element model [16, 60]) and is

obtained by the association in series of a Kelvin–Voigt model and a spring (figure 2.1(d)).

This more involved layout is used frequently to model viscoleastic solids under certain

regimes, for it exhibits a behaviour closer to that of real bodies [16, 55]. Nevertheless,

it will be shown in chapter 4 that, under the assumption of small internal friction, it

happens to be equivalent to a Kelvin–Voigt solid. To obtain the constitutive equation of

the Standard Linear model, it suffices to consider that its two aforementioned constituents

are under the same tension σ, and that the total displacement s is given by the addition

of that of the Kelvin-Voigt element and that of the spring. It is then straightforward to

derive the relation

(E + E′)σ + ησ̇ = EE′s+ Eηṡ. (2.18)

The generalization of the above equation to three–dimensional solids gives us a consti-

tutive relation depending on 63 real parameters, namely:

σij + Elm
ij ∂tσlm =

(

Clm
ij + C′lm

ij ∂t

)

slm, (2.19)

whose isotropic, homogeneous version reduces to a six–parametric relation of the form

σij + ∂t (ασkkδij + 2β σij) = (λ + α′∂t) skkδij + 2(µ+ β′∂t) sij . (2.20)

Once the constitutive relation between stress and strain has ben stated, the classical

theory of viscoelasticity makes use of the Newtonian equation of motion (2.3) with the

boundary conditions (2.4). The construction of solutions to such equations for the elastic

and viscoelastic cases, as well as possible generalizations, shall be dealt with in following

chapters. Before that, we must proceed to the formulation of these classical theories

whithin the framework of General Relativity, in order to know under which circumstances

the Newtonian theory is still reliable to account for the interaction of a rigid solid with

gravitational waves.
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2.3 Relativistic theory of elasticity

2.3.1 Nonlinear theory

Within the framework of General Relativity, we shall work on a 4-dimensional, smooth

manifold, V4, representing the space-time continuum, and endowed with a non-degenerate,

pseudo-riemannian metric gµν . An elastic body will be represented by a time-like con-

gruence, which in local coordinates may be written as

xµ = Xµ(τ,α), (2.21)

where Xµ are smooth functions of proper time, τ , and three Lagrangian coordinates αA,

labelling the particles of the elastic body1. Equations (2.21) can be viewed as a map

between the space-time manifold and the product manifold R × B3, B3 being a three-

dimensional manifold whose points represent the positions of the particles of the elastic

body at some initial state. This map must be invertible, so that we can write

τ = A0(x) αB = AB(x), (2.22)

for properly chosen functions A0,AA. We can also introduce the Jacobian matrices

(Xµ
0 , X

µ
A) and (A0

µ,AA
µ ) with the usual definition:

Xµ
0 ≡ ∂Xµ

∂ τ
Xµ

A ≡ ∂Xµ

∂ αA

A0
µ ≡ ∂A0

∂ xµ
AA

µ ≡ ∂AA

∂ xµ
(2.23)

and which are inverse matrices:

Xµ
0 A0

ν +Xµ
BAB

ν = δµ
ν (2.24)

A0
µX

µ
0 = 1 A0

µX
µ
B = 0 AC

µX
µ
B = δC

B , (2.25)

As usual, we introduce the normalised velocity vector field:

uµ ≡ dXµ

d τ
uµuµ = −c2. (2.26)

The interaction between the particles of the elastic body will be described by a second-

rank, symmetric energy-momentum tensor, Tµν , which satisfies the conservation equa-

tions

∇µTµν = 0. (2.27)

1Uppercase indices run from 1 to 3, and will always be attached to magnitudes defined in the La-

grangian manifold of the particles of the body.
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Assuming no heat conduction, i.e., supposing the deformation is an adiabatic process,

we can split the energy-momentum tensor into its components along the four-velocity and

those orthogonal to it as follows:

Tµν = ρ(1 + c−2ǫ)uµuν − σµν σµνu
µ = 0. (2.28)

Here, ρ stands for the rest mass density, while ǫ is the internal energy per unit mass, which

in our case will be potencial elastic energy. The symmetric, purely spatial tensor σµν

plays the part of the classical stress tensor discussed in the previous section. Introducing

the projector onto the orthogonal subspace to the flow-lines,

P ν
µ ≡ δν

µ +
1

c2
uµu

ν , (2.29)

equations (2.27) can be split into an energy conservation equation (mass conservation,

∇µ(ρ uµ) = 0, is assumed):

ρ uµ∇µǫ = σµν∇µuν , (2.30)

and an equation for the acceleration of the world-lines,

ρ(1 + c−2ǫ)uµ∇µuν = Pµ
ν ∇ασαµ, (2.31)

analogous to the classical equation (2.3), when no external forces are considered (we

note that (2.31) represents three independent equations, as it involves only magnitudes

orthogonal to uµ). As in the case of Newtonian formulation, we need a relation between

the stress tensor and the state of deformation of the body, as described by the vector

field u or, equivalently, by the congruence (2.21). The spatial distance between nearby

particles of the solid is given by the induced metric Pµν , but, to define a strain tensor

in the fashion of equation (2.1), we need to introduce a reference spatial metric, P
(0)
AB ,

giving us the distances between the particles before deformation. The strain tensor can

then be defined analogously to the classical case as

uAB ≡ 1

2

(

PµνX
µ
AX

ν
B − P

(0)
AB

)

. (2.32)

Then, ∆(τ,α) = 2uABdα
AdαB will be the variation of the distance between the particles

labelled by Lagrangian coordinates α and α + dα at proper time τ . This variation can

also be expressed in terms of space-time coordinates as ∆(x) = 2uµνdx
µdxν , where

uµν =
1

2

(

Pµν − P
(0)
CDAC

µ AD
ν

)

≡ 1

2

(

Pµν − P (0)
µν

)

, (2.33)
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is the relativistic, space-time counterpart of the classical strain tensor (by construction,

uµν is also a purely spatial tensor). P
(0)
µν plays the role of an intrinsic thermodinami-

cal variable characterizing the elastic body, with the only a priori restriction of being

invariant along the flow-lines, i.e.,

LuP
(0)
µν = 0, (2.34)

which is also Born’s condition for rigid motion [107, 109]. This approach must face the

conceptual difficulty of giving a way for determining the intrinsic metric of the body,

P
(0)
AB. While Carter and Quintana [23] simply set P

(0)
µν = 0 with no argument other than

convenience, Hernández [61] suggests that it could be measured when the body is in

equilibrium and in a zone with no gravitational fields. As pointed out by Winicour and

Glass [57], this method will not be operative when the body, in its natural state, is not

an elastic solid, as will probably be the case when dealing with strong gravitational fields.

Nevertheless, in the case of a linear gravitational wave superposed to a static background,

the intrinsic metric of the elastic body can be defined easily as the induced spatial metric

corresponding to the static metric describing the background (see next section). This

approach amounts to considering the proper spatial distance between the particles of the

elastic body as the natural magnitude to define strain, instead of the gauge-dependent

difference of coordinate positions used in the Newtonian theory, a choice which seems the

natural one within the theoretical framework of General Relativity. Once a definition of

strain has been given, the relativistic generalization of Hooke’s Law is straightforward:

σµν = Cαβ
µν uαβ , (2.35)

where Cαβ
µν must be purely spatial and have the Voigt symmetries (2.6), so that we have

again 21 independent constants fully describing an elastic body. For the homogenous,

isotropic case, these constants are reduced to the Lamé coefficients λ and µ, and (cf.

(2.7)):

Cαβ
µν = λ gαβgµν + 2µ δ(αµ δβ)

ν . (2.36)

Now we could go on to introduce the above relations into the equations of motion,

and obtain the exact non-linear equations governing the motion of an elastic body in a

gravitational field, that must be suplemented with Einstein equations for the metric gµν .

Such a developement can be found, e.g., in the early work of Souriau [113], or in the

equivalent formalisms of Carter [23, 21, 22] and Maugin [87]. But, as the gravitational

fields of the Earth, and that of a hypothetical gravitational wave impinging the Earth are
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weak, we are not interested in the full non-linear theory, and in the next section we shall

consider the particular case of a test elastic body interacting with a linear gravitational

wave, along the lines of previous work by Maugin [85] and Papapetrou [97].

Before that, we must mention a different approach to the theory of strain, termed

theory of hypoelasticity [57], and introduced by Synge [114] and Papapetrou [97]. These

authors avoid the definition of the strain tensor (and, therefore, of an intrinsic metric

of the body), and make use of the rate of change of strain tensor, eµν , given by the

well-known expression

eµν ≡ 1

2
LuPµν = Pα

µ P
β
ν ∇(αuβ), (2.37)

and a generalized Hooke’s law relating rate of change of strain and rate of change of

stress:

Luσµν = Cαβ
µν eαβ . (2.38)

We note that the above expression is a straightforward consequence of our previous

definition of strain (2.33) and Hooke’s law (2.35), and, therefore, hypoelasticity contains

as a special case our previous theory of elasticity. In fact, they only differ in quantities

whose Lie derivative is null, such as the intrinsic metric P
(0)
µν . This metric appears, so

to speak, as a constant of integration in hypoelasticity, so that we would be faced again

with the problem of its determination. Most authors circumvent this problem by treating

always with Lie derivatives of the equations of motion, making the calculations rather

cumbersome. Thus, we shall prefer treating directly with the previously outlined theory

of strain, which will allow, in the next section, a derivation of the differential equations

for the particle displacements clearer and quicker than those found in the literature

[97, 85, 23].

2.3.2 Weak field limit

We shall focus now our attention in the particular case of a resonant detector on the

Earth which interacts with an impinging gravitational wave. This particularization will

allow some simplifying assumptions that will make easier the application of the formalism

outlined in the preceeding section. These assumptions are the following:

1. The elastic body can be considered as a test body, i.e., its energy-momemtum

tensor does not appear as a source in Einstein equations for the metric.

2. The background metric will be a solution to the linearized Einstein vacuum equa-

tions, representing a weak gravitational wave, plus a weak static field representing
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the Earth’s gravitational field. Thus, we shall write it as

gµν = ηµν + γµν + hµν (2.39)

in a properly chosen coordinate system. Here, η is the Minkowski metric, γ stands

for a static solution (e.g., Schwarzschild’s) with Killing timelike vector ∂t (that

is, ∂tγµν = 0), and h is a linear gravitational wave sweeping the detector, which

will be assumed different from zero only in a given time lapse. Non-linear terms

involving self-interaction of the gravitational field will be discarded, as both γ and

h are small, although the static field will be greater than the gravitational wave:

ηµν ≫ γµν ≫ hµν . (2.40)

3. The displacements that the particles of the elastic body undergo, as well as their

velocities, are small. The elastic body will be assumed in equilibrium in the static

gravitational field before the gravitational wave arrives. The congruence (2.21) will

be given by the following equations:

x0 = ct xi = xi
(0) + si(t), (2.41)

xi
(0) being the particle’s position before the arrival of the gravitational wave. In the

notation of the previous section, we can choose the Lagrangian coordinates simply

as αA = δA
i x

i
(0).

Under these assumptions, we can compute the equations of motion up to first order

in the small quantities

h, si/L, V i/c ≈ o(1), (2.42)

L being the typical size of the detector, and V i ≡ si
,t, the particle’s velocity. Hence, we

shall drop out any term quadratic in the above quantities, as well as any product of a

first order quantity by γ.

The inverse transformations (2.22) between Lagrangian and space-time coordinates

will be the following:

τ = A0(x) = c−1

∫ t
√

−gµνV µV ν dt =

∫ t(

1 − h00

2
− γ00

2

)

dt (2.43)

αA = AA(x) = xiδA
i − si(t)δA

i , (2.44)



28 Chapter 2. Interaction of gravitational waves with elastic and viscoelastic bodies

where we have defined V 0 ≡ c. Equation (2.43), which follows from the definition of

proper time, allows a direct calculation of the velocity four-vector, yielding:

u0 = c
dt

d τ
= c

(

1 +
γ00

2
+
h00

2

)

ui = u0V i/c = V i (2.45)

u0 = −c
(

1 − γ00

2
− h00

2

)

ui = c(γ0i + h0i) + Vi. (2.46)

The orthogonal projector and induced metric of the solid body, Pµν , is then:

P00 = 0 P0i = −c−1Vi Pij = gij . (2.47)

Before the arrival of the gravitational wave, we have simply u = ∂0, and gµν = ηµν +γµν .

The spatial metric corresponding to the orthogonal subspaces x0 = 0 is then given by

the well-known expression (see [73], x84):

gij −
g0ig0j

g00
,

whence the intrinsic reference metric is

P
(0)
AB = δi

Aδ
j
B(δij + γij). (2.48)

In order to compute the strain tensor (2.33), we need, finally, the Jacobian matrix of the

transformation (2.44), which is easily computed to give:

AA
i = δA

i − δA
j s

j
,i AA

0 = −δA
j

V j

c
. (2.49)

Using now in the definition (2.33) for the strain tensor the relations (2.47), (2.48) and

(2.49), we obtain

uij = s(i,j) +
1

2
hij , (2.50)

the other components of uµν being null (as expected, for uµν is by definition a spatial

tensor). Comparing this equation with the Newtonian one (2.2), we see that the relativis-

tic theory introduces the variation, hij , of the background metric into the calculation of

the distance increments, as well as the coordinate displacements. In fact, equation (2.33)

implies that the proper spatial distance between particles is the quantity that measures

strain, and, as should be expected, uij is a gauge-invariant quantity. This seems to be a

conceptually sound definition of strain whithin a metric theory of the gravitational field,

and reassures the previous formalism. Using Hooke’s law, we can now write down the

stress tensor for a homogeneous, isotropic body (which, again, shall be purely spatial) as

σij = λukkδij + 2µuij = σ
(N)
ij + σ

(R)
ij , (2.51)
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where we have introduced the notation

σ
(N)
ij ≡ λ skkδij + 2µ sij (2.52)

σ
(R)
ij ≡ λ

2
hkkδij + µhij (2.53)

for the Newtonian and purely relativistic parts of the stress tensor.

Let us turn our attention to the conservation equation. The energy conservation

equation (2.30) becomes

ρ
∂ǫ

∂ t
= σij∇iuj, (2.54)

which shows that the energy density is a second order quantity. On the other hand, the

spatial part of the covariant derivative of u is simply the Lie derivative of the strain

tensor (cf. (2.37)), and we can rewrite the above equation as

ρ
∂ǫ

∂ t
= σijLuu

ij . (2.55)

The Lie derivative of an arbitrary second rank tensor Aµν is, by definition,

LuA
µν ≡ uα∂αA

µν −Aαµ∂αu
ν − Aαν∂αu

µ,

whence, whenever Aµν is a first order quantity, we have simply

LuA
µν =

∂Aµν

∂ t
. (2.56)

Thus, the mass conservation equation (2.55) finally becomes

ρ
∂ǫ

∂ t
= σij

∂uij

∂ t
. (2.57)

Due to the fact that σij is linear in the strain tensor, the preceeding equation can be

immediately integrated to give the elastic potential energy density:

ǫ =
1

2ρ
σiju

ij + ǫ0, (2.58)

where ǫ0 is an arbitrary function of the point which is time independent an gives the

initial potential energy stored in the elastic body.

To first order, the covariant divergence of the stress tensor appearing in the equa-

tion for the acceleration (2.31) reduces to the Minkowskian one, as the terms involving

products of the stress tensor by Christoffel symbols will all be second order. Hence,

Pµ
i ∇νσνµ = σij,j . (2.59)
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On the other hand, the first order expression for the acceleration will be

ai = uµ∇µu
i =

∂2si

∂ t2
+ c2Γi

00, (2.60)

where Γi
00 is a Christoffel symbol, and again we have discarded second order terms of the

form (ΓV ) and (ΓV 2) in the fully covariant expression for the acceleration. Equations

(2.59) and (2.60) finally give us the desired equations of motion for an elastic body

interacting with a linear gravitational wave:

∂2si

∂ t2
− 1

ρ

∂σ
(N)
ij

∂ xj
=

1

ρ

∂σ
(R)
ij

∂ xj
− c2Γi

00. (2.61)

2.3.3 Discussion

The equations just obtained for the displacements are expressed in terms of gauge-

dependent quantities, as should be expected from the fact that the values taken by si

will depend on the coordinate system chosen to express them. We have the freedom

to use any coordinate system in which the metric can be cast in the form (2.39), and

satisfying the Hilbert gauge for the gravitational wave h. In each one of these systems,

the relativistic driving terms σ(R) and c2Γi
00 will take a given value, and will give rise

to different coordinate displacements. Thus, in the transverse, traceless gauge usually

employed to describe gravitational waves (see preceeding chapter), Γi
00 = 0, and, using

the TT properties of hµν in this gauge, we have

σ
(R)
ik,k = µ,khik, (2.62)

which is different from zero only when the shear modulus µ has inhomogenities. Hence,

for a homogenous body, a TT-observer will see no coupling between the elastic vibrations

and the gravitational wave by purely measuring the displacements. Let us emphasize this

last fact, because this absence of coupling in the differential equation for the coordinate

displacements does not imply, from our point of view, an absence of interaction between

the elastic body and the gravitational wave. Even the TT-observer would be able to

detect such an interaction provided he or she has a way to measure the potencial energy

of the body, which, according to equation (2.58) varies as the wave passes the detector.

Moreover, it is at least arguable that displacement measurements for detectors located

on the Earth must be referred to the TT coordinate system. It seems more natural to

assume that such measurements are taken in a normal coordinate system, which is the

locally Newtonian one. This system is of the type required in our calculations, and its
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connection with the TT-coordinate system has been thoroughly studied in the literature

[47, 84]. Normal coordinates are attached to a freely falling object, and are valid at

distances which are small when compared with the radius of curvature.2 In this system

the metric takes the form [83]

g00 = −1 +R0i0jx
ixj

g0i =
2

3
R0jikx

jxk

gij = δij +
1

3
Rikjlx

kxl (2.63)

where the Riemann tensor Rµναβ is calculated at the detector’s center of mass. These

formulæ are accurated up to second order in (x/R)2, with R the radius of curvature.

We are thus interested in the computation of the Riemann tensor for the case of a

gravitational wave. But, as this tensor is gauge invariant, we can directly pick the TT-

expressions calculated in the previous chapter, and therefore

R0i0j = − 1

2c2
∂2hTT

ij

∂ t2
, (2.64)

all the other components being zero. In this equation, hTT
ij denote the metric potentials

measured in a transverse, traceless gauge. Hence, in a normal coordinate system, the

metric corresponding to a gravitational wave takes the simple form

gµν = ηµν + δ0µδ
0
ν R0i0jx

ixj . (2.65)

Thus, the relativistic driving terms appearing in the equations of motion have the fol-

lowing values:

Γi
00 = R0i0jx

j σ
(R)
ij = 0, (2.66)

and we have the following differental equation for the displacements:

∂2si

∂ t2
− (λ+ µ)

ρ

∂

∂ xi

∂sk

∂ xk
− µ

ρ

∂

∂ xk

∂si

∂ xk
= −c2R0i0jx

j , (2.67)

which is valid only in a normal reference frame. Hence, in these coordinates, the effect

of the gravitational wave on the displacements appears in the familiar form of geodesic

deviation used by different authors based upon heuristical arguments [76, 123]. Our

derivation justifies their approach, and shows that it is compatible with the assumed

absence of interaction predicted by other authors from the vanishing of the driving terms

in the TT-gauge [39, 57, 23].

2In our case, this amounts to saying that the detector’s size is small compared to the wavelength of

h, which shall always be the case for realistic resonant detectors.
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2.4 Relativistic theory of viscoelasticity

The relativistic theory of viscoelasticity is developed along the same lines of relativistic

elasticity [11, 86]. In fact, we have already defined all the requisite quantities: the strain

tensor (2.33) and its rate of change (2.37). The difference between elastic and viscoelastic

solids, as was the case in the classical theory, depends on the way in which the state of

deformation of the body at hand gives rise to a distribution of stress inside it. While for

an elastic body this was described by Hooke’s law as given by equation (2.35) or (2.38),

for a viscoelastic solid we must take into account the combined effects of strain and rate

of strain, as both happen to cause internal stresses. In general, we can generalize the

classical constitutive equations discussed in x2.2.2 to a covariant formulation of the form

(

δα
µδ

β
ν +Dαβ

µν Lu

)

σαβ =
(

Cαβ
µν + C

′αβ
µν Lu

)

uαβ, (2.68)

where the purely spatial tensors D, C and C′ have the Voigt symmetries (2.6). The

above equation must be used together with the equations of motion (2.30) and (2.31)

to solve the full non–linear problem in the General Relativistic case. However, we shall

be, again, mainly interested in the weak field limit. In this approximation, which we

have studied in detail in x2.3.2, the four–dimensional quantities appearing in the general

constitutive equation (2.68) are transformed according to the following rules:

uµν → sij +
hij

2
, (2.69)

where the metric potentials hij vanish when measured in a Fermi coordinate system, and

Luuµν → ∂tuij , (2.70)

(cf. equation (2.56)). Therefore, in the weak field limit, the four–dimensional constitutive

equation (2.68) reduces to the classical expressions already given in x2.2.2. On the other

hand, the equations of motion can be written as

∂2si

∂ t2
− 1

ρ

∂σij

∂ xj
= −c2R0i0jx

j , (2.71)

when expressed in a Fermi coordinate system (cf. the discussion of previous section).

Hence, when measuring displacements in such system, the relativistic equations of motion

for a viscoelastic solid will be identical to the classical ones with a tidal driving term.



Chapter 3

Normal modes of vibration for

spherical solids

3.1 Introduction

In this chapter, we shall focus our attention in the idealized case of a free, elastic

body with spherical symmetry and subject to neither external forces nor surface trac-

tions. The time–dependent, periodic deformations that such a body can undergo are

known as normal modes of vibration. A complete analysis of the normal modes of vibra-

tion of spherically symmetric elastic bodies is presented, giving the mathematical basis

for the construction of the general solution to the equations of motion. Normal modes

of vibration are the building blocks to understanding and constructing the field of de-

formations which an elastic solid undergoes as a result of any driving force, and, as we

shall see, permit us a natural separation of the spin features of any forced solution. As

gravitational waves have well-defined spin properties, they will excite only those modes

with requisite ones. Thus, a sound knowledge of both the mathematical and physical

properties of normal modes happens to be paramount in our understanding of the per-

formance of spherical elastic bodies as antennæ of gravitational radiation. Once these

properties have been stated, we apply them, in chapter 5, to the solution of the equations

of motion for a tidal-like driving term, always assuming spherical symmetry, and to the

calculation of absorption cross-sections.

Most of the results presented in this chapter can be found (for the case of the solid

sphere) in classical books and papers on elasticity [68, 71, 72, 80], or modern research
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papers [119, 76, 5, 89, 88], but, to our knowledge, there is no complete survey of this

subject in the literature. Thus, our aim is to present here a comprehensive derivation

and analysis of this matter with a view to its application to the problem of detection of

gravitational radiation, as well as to generalize the known calculations (which are always

referred to solid spheres) to the interesting case of a hollow, elastic sphere. Spherical

symmetry will allow us, with the help of a little numerical work, to completely solve the

rather cumbersome set of differential equations and boundary conditions appearing in the

classical theory of elasticity, and to bring up the nice mathematical structure underlying

it.

Nevertheless, exact spherical symmetry would be seldom present in real cases. For

instance, the suspension of a rigid elastic sphere in the static gravitational field of the

Earth will give rise to its shape deformation. In order to compute how small deviations

from spherical shape and/or homogeneity affect the solid’s spectrum, we close this chapter

with a perturbation squeme for the equations of elasticity. By way of example, we

calculate the threefold splitting of the fundamental mode of a hung sphere.

Also, the reformulation of the elasticity equations introduced to tackle this problem,

will be used in chapter 5 to find the solution to the forced equations of motion.

3.2 General elastic solid

Through this and the following chapters, we shall deal with homogeneous, isotropic

elastic bodies with constant density ρ, and which undergo small deformations following

the linear Hooke’s law. Thus, their elastic properties shall be fully described by two

constant Lamé coefficients, λ and µ. As showed in the preceeding chapter, the field of

displacements s(x, t) induced by a gravitational wave impinging on such a solid, when

measured in a normal coordinate system, is given by the solution to the following set of

partial differential equations:

ρ
∂2s

∂ t2
− (λ+ µ)∇ (∇ · s) − µ∇2s = f(x, t), (3.1)

satisfying, on the body’s surface, suitable boundary conditions. In the above equations,

f stands for the body force density induced by the passing gravitational wave (cf. the

discussion in previous chapter).

Before proceeding to the solution of the equations of motion, we shall deal with the

periodic, separable solutions to the homogeneous counterpart of (3.1), i.e., with solutions
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of the form

s(x, t) = eiωts(x), (3.2)

where the spatial part s(x) satifies the eigenvalue equation

(λ+ µ)∇(∇ · s) + µ∇2s = −ρω2s, (3.3)

as well as homogeneous boundary conditions. These solutions, known as normal modes of

vibration, describe the unforced oscillations of an elastic body, and will be used in chapter

5 as the basis to constructing the general solution to (3.1), and to compute the sensitivity

of spherical detectors to gravitational waves. We will also show in chapter 4 that they

appear again in the description of quasi–normal modes of vibration of viscoelastic bodies.

In order to solve equation (3.3), we shall split the vector field s(x) into its irrota-

tional and divergence-free components, termed, respectively, longitudinal and transverse

components:

s = st + sl, ∇ · st = 0, ∇× sl = 0. (3.4)

Introducing this splitting into equation (3.3), we get

(λ+ µ)∇(∇ · sl) + µ∇2(sl + st) = −ρω2(sl + st), (3.5)

and, taking the divergence of the above relationship, the following relation follows:

∇ ·
[

(λ + 2µ)∇2sl + ρω2sl

]

= 0.

Thus, the vector between square brackets has null divergence and rotational, and, there-

fore, must vanish everywhere. This yields a Helmholtz equation for sl:

∇2sl + q2sl = 0

(

q2 ≡ ρω2

λ+ 2µ

)

. (3.6)

As regards the transverse part, taking the rotational of equation (3.5) and using the fact

that both the rotational of a gradient and the rotational of sl are null, we are left also

with a Helmholtz equation for st:

∇2st + k2st = 0

(

k2 ≡ ρω2

µ

)

. (3.7)

Thus, sl and st represent wave motions propagating, respectively, with speeds vl =
√

µ/ρ

and vt =
√

(λ + 2µ)/ρ. It is also worth noting the following relation, which is valid for

any elastic solid:
q

k
=
vt

vl
=

√

µ

λ+ 2µ
. (3.8)
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The transverse and longitudinal solutions can be constructed (see, e.g., [5] or [76])

using two scalar functions, φ(x; q) and ϕ(x; k), which are solutions of equations:

∇2φ(x; q) + q2φ(x; q) = 0 ∇2ϕ(x; k) + k2ϕ(x; k) = 0, (3.9)

and applying to them differential operators which commute with the Laplacian operator

and which give rise to transverse and longitudinal independent vectors when applied to

a scalar function. For the longitudinal part, the obvious choice is the gradient:

sl = ∇φ, (3.10)

The suitable choice for the case of the transverse solution is the well–known “angular

momentum” operator L = −ix×∇, and, in order to obtain a third independent solution,

the operator ∇ × L1. We shall have then two transverse solutions, st and st′ given by

the following expressions:

st = i∇× Lϕ (3.11)

st′ = iLϕ, (3.12)

The final solution shall therefore be expressed as a linear combination of the form:

s(x) =
Cl

q
sl +

Ct

k
st + Ct′st′

=
Cl

q
∇φ(x; q) + i

Ct

k
∇× Lϕ(x; k) + i Ct′Lϕ(x; k), (3.13)

with the constants Ct, Ct′ , Cl having dimensions of length and chosen, together with k,

so that the boundary conditions are satisfied.

Up to now, the method exposed is general enough to be applied, in principle, to

any homogeneous, isotropic elastic solid, and, in fact, to the construction of solutions to

equation (3.3) satisfying arbitrary boundary conditions. Nevertheless, normal modes of

vibration are, by definition, bound to satisfy the homogenous conditions

λ (∇ · s)n + 2µn · ∇s + µn × (∇× s) = 0, (3.14)

on the body’s surface, which endow normal modes of vibration with some interesting and

well–known properties: they are orthogonal, and admit only real eigenfrequencies.

In the following two sections, we shall carry out the explicit calculation of the normal

modes when spherical symmetry is also assumed.

1That this is in fact the case, will be proved a posteriori by the actual construction of the solutions

(cf. next section).
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3.3 Solid sphere

3.3.1 Form of the solutions and boundary conditions

Let us consider the case of a solid sphere of radius R and constant density ρ. Using

spherical coordinates (r, θ, φ), the regular solutions of equations (3.9) are

φlm(r, θ, φ) = jl(qr)Ylm(θ, φ), ϕlm(r, θ, φ) = jl(kr)Ylm(θ, φ), (3.15)

where jl stands for the spherical Bessel functions of the first kind,

jl(z) = (−)lzl

(

1

z

d

dz

)l
sin z

z
, (3.16)

which are regular at the origin, and Ylm are spherical harmonics (we follow the usual

conventions for special functions; see, e.g., [2, 59]). As usual, here l denotes a multipolar

integer index running from zero to infinity, while m can take any integer value from −l
to l.

Using the expressions (3.15) and the definitions given in the previous section, we can

proceed to the computation of the longitudinal and transverse solutions as expressed

in spherical coordinates. Somewhat cumbersome algebra, involving vector differential

operators as L or ∇, is needed in the calculation. Thus, we give it in Appendix A.1.1,

where it is shown that the irrotational and divergence–free components of s can be finally

written

sl(r, θ, φ) =
djl(qr)

d r
Ylm n − jl(qr)

r
in× LYlm . (3.17)

st(r, θ, φ) = −l(l+ 1)
jl(kr)

r
Ylm n +

(

jl(kr)

r
+
djl(kr)

d r

)

in× LYlm . (3.18)

st′(r, θ, φ) = jl(kr) iLYlm . (3.19)

We note that the expressions derived for the longitudinal and transverse parts of the

normal modes are expressed naturally in terms of the orthogonal triad

(Ylm n , in× LYlm , iLYlm ),

which depends only on angular coordinates, and is a basis of the vector fields on the unit

sphere S2. They are termed pure-spin vector harmonics in [116] and they stem from

linear combinations of the usual vector spherical harmonics (see, e.g., [43], page 82). As

well as being orthogonal in each point, they have the following normalization over S2:

∫

S2(Ylmn ) · (Yl′m′n )∗dΩ = δll′δmm′
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∫

S2( in× LYlm ) · ( in× LYl′m′ )∗dΩ = l(l + 1)δll′δmm′

∫

S2( iLYlm) · ( iLYl′m′ )∗dΩ = l(l + 1)δll′δmm′ , (3.20)

where the asterisk denotes complex conjugation, and dΩ = sin2 θ dθ dφ . The explicit

representation in terms of this basis given by equations (3.17), (3.19) and (3.18) also

shows that sl, st, and st′ are linearly independent, so that their linear combination

(3.13) yields the general solution to equation (3.3).

In order to determine completely each normal mode we must find the relation between

the constants Ct, Ct′ , Cl, q and k which complies with the boundary conditions (3.14).

These boundary conditions can be written as

Cl

q
b[sl] +

Ct

k
b[st] + Ct′b[st′ ] = 0 at r = R, (3.21)

where we have introduced the linear differential operator b[.], whose action on a vectorial

field a is defined by

b[a] ≡ λ (∇ · a)n + 2µ∂ra + µn× (∇× a). (3.22)

Here, use has been made of the fact that n = x/x and, therefore, n ·∇ = ∂r. Computing

the result of applying b to the longitudinal and transverse solutions given above involves

again rather lengthy algebra. Thus, we shall give the details of the computation in the

appendix (cf. Appendix A.1.2), and quote here simply the results:

b[sl] =

[

2µ
d2jl(qr)

d r2
− λ q2jl(qr)

]

Ylm n − 2µ
d

dr

(

jl(qr)

r

)

in× LYlm ,

b[st′ ] = −µ r d
dr

(

jl(kr)

r

)

iLYlm ,

b[st] = −2µ l(l+ 1)
d

dr

(

jl(kr)

r

)

Ylm n

+µ

[

d2jl(kr)

d r2
− (l + 2)(l − 1)

jl(kr)

r2

]

in× LYlm . (3.23)

Inserting the above equations into (3.21), and taking into account the orthogonality of

the vector spherical harmonics involved, the boundary conditions can be cast as the

following system of linear equations for the constants Cl, Ct and Ct′ :









β4(qR) −l(l+ 1)k
q β1(kR) 0

−β1(qR) k
qβ3(kR) 0

0 0 −k
q kRβ1(kR)

















Cl

Ct

Ct′









= 0, (3.24)
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where, to ease the notation, we have introduced the following set of auxiliary functions:

β1(z) ≡ d

dz

(

jl(z)

z

)

β2(z) ≡ d2jl(z)

d z2

β3(z) ≡ 1

2

[

β2(z) + (l + 2)(l − 1)
jl(z)

z2

]

β4(z) ≡ β2(z) −
λ

2µ
jl(z). (3.25)

The homogeneous system (3.24) will admit non-trivial solutions only in the case that

the determinant of its 3 × 3 matrix of coefficients is null. When the elastic properties

of the material (i.e. the quotient λ/µ) are given, this matrix is a function only of the

non-dimensional parameter kR, because, by definition, k2 = q2 (2 + λ/µ) (cf. (3.8)).

Thus, imposing the condition of compatibility to the linear system (3.24) will provide

a trascendental equation to be satisfied by kR, which has a numerable infinity of real

solutions, and which will give the eigenfrequencies of each normal mode via the relation

ω = k vt. The fact that the spectrum is real and numerable can be proved within the

standard theory of self-adjoint operators on Hilbert spaces. In fact, equations (3.3) and

(3.14) define a well-posed eigenvalue problem (of the elliptic type, see [35]) on the Hilbert

space of integrable vector fields with support in the interior of a sphere and measure of

integration ρ.

The compatibility condition of the homogeneous system (3.24) can be written as

det

(

β4(qR) −l(l+ 1)β1(kR)

−β1(qR) β3(kR)

)

· β1(kR) = 0, (3.26)

giving rise to two families of normal modes which we shall term spheroidal and toroidal

modes, and will describe in the following subsections.

3.3.2 Spheroidal modes

We will term spheroidal2 those modes satisfying condition (3.26) in the form

det

(

β4(qR) −l(l+ 1)β1(kR)

−β1(qR) β3(kR)

)

= 0. (3.27)

2This denomination is used in the classical book of A.E.H. Love [80] for modes satisfying (3.27) with

l = 2. Its use to encompass all values of l has been recently introduced in modern literature [91, 76].
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We shall label the solutions to the above equation kP
nl, with the superindex P denoting the

spheroidal family, n running from 1 to infinity and indicating which solution of equation

(3.27), for a fixed l, we are considering. The fact that equation (3.27) does not depend

on the index m implies that the spectrum is degenerate. Due to the fact that m runs

from −l to l, there will correspond, to each eigenvalue kP
nl, (2l+ 1) normal modes which

will be denoted sP
nlm.

Provided equation (3.27) is satisfied, the system (3.24) is compatible, and its solutions

can be written

Ct = C(n, l)
q

k
β1(qR

P
nl), Cl = C(n, l)β3(kR

P
nl), Ct′ = 0, (3.28)

with C(n, l) an arbitrary normalization constant with dimensions of length. Introducing

these values into the general solution (3.13) and using the expressions (3.17) and (3.18)

for sl and st, we can write down the final form for spheroidal normal modes of vibration

as:

sP
nlm(r, θ, φ) = Anl(r)Ylm(θ, φ)n −Bnl(r) in × LYlm (θ, φ), (3.29)

where the radial functions Anl(r) and Bnl(r) have the form

Anl(r) = C(n, l)

[

β3(k
P
nlR)

djl(q
P
nlr)

d (qP
nlr)

− l(l+ 1)

√

µ

λ+ 2µ
β1(q

P
nlR)

jl(k
P
nlr)

kP
nlr

]

(3.30)

Bnl(r) = C(n, l)

[

β3(k
P
nlR)

jl(q
P
nlr)

qP
nlr

−
√

µ

λ+ 2µ

β1(q
P
nlR)

kP
nlr

d

dr
{r jl(kP

nlr)}
]

. (3.31)

As mentioned earlier, the spheroidal eigenvalues do depend on the elastic properties

of the material. In fact, our derivation shows that they are only function of the quotient

λ/µ. When characterizing an elastic body, it is usual to give the material’s Poisson ratio
3, σ, instead of this quotient, the relation between them being

λ

µ
=

2 σ

1 − 2 σ
. (3.32)

Most materials have a Poisson ratio close to 1/3, corresponding to λ/µ = k/q ≈ 2, and

we shall use these values unless stated otherwise.

Before proceeding to the description of the solutions of the eigenvalue equation (3.27),

it must be noted that neither this equation, nor equation (3.29), are valid for the monopo-

lar modes. This is due to the fact that, when l = 0, the transverse solution st vanishes

3As is well known (see, e.g., [80]), σ has a direct physical meaning, for it gives the ratio between

the longitudinal and transverse strains undergone by the material when subject to purely longitudinal

stress.
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identically, for Y00(θ, φ) = const. and, therefore, Lϕ00 = 0. Thus, monopolar modes in

the spheroidal family are purely radial, and their spatial part is directly given by the

normal component of sl (cf. (3.17)):

sP
n0(r, θ, φ) = An0(r) n, An0(r) = C(n, 0)

dj0(q
P
n0r)

d (qP
n0r)

, (3.33)

with C(n, 0) an arbitrary constant to be fixed on by normalization. The corresponding

eigenvalue equation follows immediately from the expression of b[sl], yielding

d2j0(q
P
n0R)

d (qP
n0R)

2 − λ

2µ
j0(q

P
n0R) = 0. (3.34)

Solutions to equations (3.27) and (3.34) can be found numerically 4. In table 3.1,

an ascending list of the first twenty spheroidal eigenvalues is given, together with the

corresponding ratios Ctq/Clk, and the frequencies of vibration for a realistic aluminium

prototype (according to the data given in [28]).

The asymptotic behaviour of these roots can be investigated analytically using the

approximate expression [59]

jl(z) ≈
1

z
sin

(

z − lπ

2

)

, (3.35)

which is valid for large z. Under this approximation, equation (3.27) becomes simply:

sin

(

kR− lπ

2

)

sin

(

qR− lπ

2

)

= 0, (3.36)

and this gives two subfamilies of solutions, namely:

kP1

nl R =

(

n+
l

2

)

π, kP2

nl R =

√

2 − 2σ

1 − 2σ

(

n+
l

2

)

π. (3.37)

When σ = 1/3 and l is even, these two subfamilies are reduced to one, for, in this case,

kP1

(2n+l/2)l = kP2

nl . In any case, these asymptotic expansions explicitly show (in their

range of application) the property of the spectrum of being real, infinite and numerable.

Equations (3.37) also show that the first asymptotic subfamily kP1

nl does not depend

on the Poisson’s ratio. This family is absent in monopolar modes, kP2

n0 being the only

solutions to the asymptotic expansion of equation (3.34).

4We have developed a set of routines in the C programming language which perform the numerical

work in this and the following chapters. They can be found in appendix C, together with technical notes

on their implementation.
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(l, n) kP
nlR Ctq/Clk ν (kHz)

1 (2, 1) 2.650057 0.442497 0.872547

2 (1, 1) 3.595977 0.987960 1.183997

3 (3, 1) 3.950174 0.173835 1.300619

4 (4, 1) 5.068344 0.079603 1.668783

5 (2, 2) 5.096570 0.382722 1.678076

6 (0, 1) 5.487415 0.000000 1.806764

7 (5, 1) 6.114831 0.039203 2.013345

8 (3, 2) 6.705269 0.212617 2.207750

9 (6, 1) 7.126136 0.020140 2.346323

10 (1, 2) 7.241487 -1.645431 2.384303

11 (7, 1) 8.117472 0.010638 2.672727

12 (4, 2) 8.308504 0.145170 2.735625

13 (1, 3) 8.549399 0.290161 2.814941

14 (2, 3) 8.625516 -1.088729 2.840003

15 (8, 1) 9.096253 0.005731 2.994996

16 (5, 2) 9.860896 0.112823 3.246760

17 (3, 3) 9.981210 -0.704011 3.286374

18 (9, 1) 10.066528 0.003133 3.314465

19 (1, 4) 10.729561 -4.366269 3.532773

20 (2, 4) 10.985709 0.222634 3.617111

Table 3.1. First solutions to the spheroidal eigenvalue equation for σ = 1/3. The

ratio between the maximum amplitudes of the transverse and longitudinal waves

superposed in the corresponding normal mode is also displayed. In the last column,

we list the frequency ν = ω/2π of each mode for typical planned aluminium spheres

(R = 1.50 m, vt = 3160 ms−1).
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Figure 3.1. Dependence of the first spheroidal eigenvalues kP
nlR on the Poisson’s

ratio σ. They already show, in an approximate way, the splitting into two subfami-

lies appearing in the asymptotical regime. The first subfamily (roots represented by

continuous lines) is nearly independent of σ, while the second one (dashed lines)

shows a marked dependence on Poisson’s ratio. The vertical dotted line marks the

usual value σ = 1/3.

In figure 3.1, the dependence on σ of the first spheroidal eigenvalues is displayed.

Remarkably, these roots can already be grouped into two subfamilies, one of them con-

sisting of eigenvalues that vary only slightly with σ, and the other one of roots showing

a more strongly marked dependence on this parameter. The relative weight that the

longitudinal and transverse solutions have in each normal mode, which is given by the

ratio Ctq/Clk, will be also a function of σ. Figure 3.2 displays this dependence for the

same set of roots, showing that increasing l implies a smaller contribution of st in the

superposition conforming the normal mode.

Let us turn our attention to the spatial field of displacements associated which each
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Figure 3.2. Relative weights of the transversal (st) and longitudinal (sl) solutions

superposed in the first spheroidal normal modes, as a function of Poisson’s ratio

σ. The labels indicate the pair (n, l), and the dotted vertical line the usual value

σ = 1/3. We observe that the longitudinal component predominates for increasing

l.

normal mode and given by equation (3.29). This equation gives a set of complex solutions,

and we can make any linear combination of these modes for a fixed l, the result being

again a normal mode of vibration, due to the degeneracy of eigenfrequencies. In order to

cope with real displacements, instead of the usual, complex–valued spherical harmonics,

we may work with the so–called real spherical harmonics (Y C
lm(θ, φ), Y S

lm(θ, φ)), which,

for a fixed l, are given by

Y C
lm ≡ i√

2
(Ylm + Yl−m) , Y S

lm ≡ 1√
2

(Ylm − Yl−m) (m = 0 . . . l). (3.38)

As Y C
l0 = 0, we also have (2l+1) real spherical harmonics, which are orthormal functions

too. Thus, all the complex expressions obtained so far in terms of scalar and vector
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m = 0 (S) m = 1 (S) m = 2 (S)

m = 1 (C) m = 2 (C)

Figure 3.3. Shape deformation induced by the quadrupolar (l = 2) real modes.

The first row shows the undeformed sphere and modes m = 1 and m = 2 of the

C-type (i.e., those induced by the normal field of displacements Y C
2mn), while in

the second row the three modes of type S (corresponding to Y S
2mn) are displayed.

spherical harmonics can be transformed to their real counterparts by simply substituting

the set of functions {Ylm}m=−l...l by the real set {Y C
lm, Y

S
lm}m=0...l.

When vibrating in a normal mode, the shape of a spherical solid will be distorted as

a result of the radial displacements that its surface undergoes. This radial displacements

shall be described (cf. (3.29)) by the real vector fields Anl(r)Y
C,S

lm (θ, φ)n, calculated at

the sphere’s surface. Figure (3.3) displays an overemphasized plot of the shape deforma-

tions induced by the quadrupolar normal modes of vibration, which, together with the

monopolar ones (which, being isotropic, preserve the spherical shape, cf. (3.33)), will

play a crucial role in the detection of gravitational radiation.

Tangential displacements also appear in spheroidal modes of vibration, due to their

component along in×LYlm . In spherical coordinates, this vector has the following form:

− in× LYlm =
∂Ylm

∂ θ
θ +

1

sin θ

∂Ylm

∂ φ
φ, (3.39)

where (n,θ,φ) is the natural orthonormal basis in spherical coordinates. Thus, the

particles of the elastic solid are subject to azimuthal, as well as polar, tangential shifts.
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These displacements, induced by the components of in × LYlm along φ and θ, are

displayed, for the quadrupolar case, in figure 3.4. We have plotted in this figure only the

real modes of type S, as C-modes are obtained from these by specular reflection with

respect to the appropiate plane (equatorial for polar shifts and meridional for azimuthal

ones). As regards the azimuthal shifts (which are null for m = 0 due to the fact that

∂φYl0 = 0), it is seen that a twist of the great circles θ =const. is induced by the m = 1

mode, while the modem = 2 causes a grouping of these lines. Polar displacements appear

for all values of m, the case m = 0 always preserving axial symmetry. For the sake of

clarity, we have represented polar an azimuthal deformations in separate figures. The

total tangential displacement caused by normal modes is obtained by vector addition of

the two orthogonal shifts represented in each row of figure 3.4.

Both the radial and the tangential deformations described above repeat inside the

sphere for each value of r, although weighted by the radial functions Anl(r) and Bnl(r),

which give the relative amplitudes of the r–independent fields Ylm n , in×LYlm . These

functions are represented in the next section (figures 3.12 and 3.13) for the first monopolar

and quadrupolar modes, together with the corresponding functions for the case of a hollow

sphere.

3.3.3 Toroidal modes

The second possibility when solving equation (3.26) is to look for solutions satisfying

β1(kR) = 0 ⇒ djl(kR)

d (kR)
=
jl(kR)

kR
. (3.40)

The eigenvalues obtained when solving the above equation are termed toroidal, and,

again, they present a (2l+1)–fold degeneracy, as (3.40) does not depend on m. Thus, we

shall label these eigenvalues kT
nl, and the corresponding normal modes sT

nlm, with n and l

positive integers (there are no monopolar tangential vibrations), and m (the degeneracy

index) running from −l to l. It should be noted that toroidal eigenvalues, unlike the case

of the spheroidal family, do not depend on the material’s elastic properties. Numerical

evaluation of equation (3.40) yields the toroidal spectrum, whose first eigenvalues are

listed in Table 3.2, together with the corresponding frequencies for the same planned

detector considered in the case of spheroidal roots. The first toroidal eigenvalue happens

to be the absolute minimum of the sphere’s spectrum, being 5% smaller than the first

spheroidal one, which is also quadrupolar.
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m = 0, δθ

m = 1
δφ δθ

m = 2
δφ δθ

Figure 3.4. Tangential displacements of the sphere’s surface for spheroidal,

quadrupolar normal modes. The first figure shows the undisturbed surface.

On the left column, the azimuthal shifts appear, induced by the vector field

(sin θ)−2(∂φY S
2m)∂φ, which are null for m = 0. The right column displays the

polar displacements, induced by the vector field (∂θY
S
2m)∂θ.
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(l, n) kT
nlR ν (kHz)

1 (2, 1) 2.501133 0.823513

2 (3, 1) 3.864700 1.272476

3 (4, 1) 5.094616 1.677433

4 (1, 1) 5.763459 1.897654

5 (5, 1) 6.265768 2.063042

6 (2, 2) 7.136009 2.349574

7 (6, 1) 7.403597 2.437679

8 (3, 2) 8.444922 2.780542

9 (7, 1) 8.519868 2.805218

10 (1, 1) 9.095011 2.994587

(l, n) kT
nlR ν (kHz)

11 (8, 1) 9.620999 3.167772

12 (4, 2) 9.712504 3.197901

13 (2, 3) 10.514601 3.461996

14 (9, 1) 10.710880 3.526622

15 (5, 2) 10.950611 3.605555

16 (10, 1) 11.792051 3.882604

17 (3, 3) 11.881747 3.912137

18 (6, 2) 12.166403 4.005862

19 (1, 2) 12.322941 4.057403

20 (11, 1) 12.866264 4.236295

Table 3.2. First toroidal eigenvalues, with the frequencies for a spherical detector

with R = 1.5 m and vt = 3160 ms−1.

The asymptotic expression for the roots of equation (3.40) is easily computed from

relation (3.35), which gives z β1(z) ≈ − cos(z − lπ/2), and, hence,

kT
nlR ≈

(

n+
l + 1

2

)

π (for large kR). (3.41)

In this family, the linear system for the coefficients (Cl, Ct, Ct′) has the solution

Cl = Ct = 0 Ct′ = C′(n, l), (3.42)

with C′(n, l) an arbitrary constant, to be fixed by a suitable normalization condition.

Thus, the spatial part of toroidal modes can be cast as

sT
nlm(r, θ, φ) = Tnl(r) iLYlm (θ, φ), (3.43)

where

Tnl(r) = C′(n, l) jl(k
T
nlr). (3.44)

As iLYlm is a purely tangential vector, whose components in spherical coordinates are

iLYlm =
1

sin θ

∂ Ylm

∂ φ
θ − ∂ Ylm

∂ θ
φ, (3.45)

these modes give rise to purely tangential displacements of the solid’s constituents. In

figure 3.5 we give a pictorial representation of such displacements for the quadrupolar,
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real modes of type S. As in the preceeding figure, we plot separately polar and azimuthal

shifts. The total tangential deformation undergone by the surface of the sphere in each

mode is obtained by the vector addition of these two orthogonal contributions.

In the next section (cf. figure 3.14), the radial function Tnl(r) is compared with their

counterparts of the hollow sphere problem.

3.4 Hollow sphere

3.4.1 Form of the solutions and boundary conditions

In this section, we shall consider the case of a hollow sphere with constant density

ρ, and inner and outer radius a and R respectively. This problem preserves spherical

symmetry, and has the particularity of removing the point r = 0 from the domain

considered, and introducing a second surface (r = a) where boundary conditions must

also be imposed. In order to find the normal modes of vibration of such a solid, we can

follow the method described in section 3.2. Thus, we must solve equations (3.9) when

the point r = 0 is removed from the domain of the functions φ and ϕ. This fact forces

the introduction of the spherical Bessel functions of the second kind [2],

yl(z) = (−)l+1zl

(

1

z

d

dz

)l
cos z

z
, (3.46)

when constructing solutions to the radial part of (3.9), regardless the fact that yl(z)

diverges at z = 0, which prevented its use in the case of the solid sphere. Hence, these

solutions can the be cast, in spherical coordinates, as

φlm(r, θ, φ) = (jl(qr) + E yl(qr)) Ylm(θ, φ)

ϕlm(r, θ, φ) = (jl(kr) + F yl(kr)) Ylm(θ, φ) (3.47)

with E and F constants5. The meaning and ranges of the indices l and m are the same

as before.

Taking into account that the new functions φ, ϕ given in (3.47) share with their coun-

terparts of the solid sphere case (3.15) all the properties employed in the calculations of

5In fact, the general solution to equations (3.9) is an arbitrary superposition of the form
∑

lm
(αlmjl Ylm + βlmyl Ylm), on which boundary conditions must be imposed in order to fix the set of

constants {αlm, βlm}. We choose solutions with αl′m′ = δll′δmm′ and βl′m′ = Eαl′m′ , anticipating

the fact that it will be enough to satisfy the requisite boundary conditions.
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m = 0, δφ

m = 1
δθ δφ

m = 2
δθ δφ

Figure 3.5. Tangential displacements induced on the sphere’s surface by toroidal

modes with l = 2. The left column displays the polar shifts, which are induced

by the vector field (sin θ)−2(∂φY s
2m)∂θ, and cancel for m = 0. On the right hand

column the corresponding azimuthal displacements, due to the field (∂θY
S
2m)∂φ, are

shown.
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R

a

Figure 3.6. The hollow sphere.

the previous section, equations (3.17), (3.19) and (3.18) for the longitudinal and trans-

verse parts of the solution in that case give us, by direct substitution, the corresponding

expressions for the hollow sphere:

sl(r, θ, φ) =
dhl(qr, E)

d r
Ylm n − hl(qr, E)

r
in× LYlm ,

st(r, θ, φ) = −l(l+ 1)
hl(kr, F )

r
Ylm n +

(

hl(kr, F )

r
+
dhl(kr, F )

d r

)

in× LYlm ,

st′(r, θ, φ) = hl(kr, F ) iLYlm , (3.48)

where we have introduced the shorthand:

hl(z,A) ≡ jl(z) +Ayl(z). (3.49)

Now, to determine completely the expression for the normal modes of vibration of a

hollow sphere, we must find the relations fulfilled by the set of constants Cl, Ct, Ct′ , E,

F , and k appearing in our formulæ . As before, these relations are given by the boundary

conditions, which for the problem in hand are

Cl

q
b[sl] +

Ct

k
b[st] + Ct′b[st′ ] = 0 at r = R and r = a, (3.50)

where the action of b on sl, st and st′ can be directly obtained from the correspond-

ing expressions for the solid sphere (3.23) by the substitutions jl(qr) → hl(qr, E) and

jl(kr) → hl(kr, F ). Introducing the equations thus obtained into conditions (3.50), and
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defining the new set of constants

Dl ≡ Cl E Dt ≡ Ct F Dt′ ≡ Ct′ F, (3.51)

the boundary conditions to be met by normal modes of vibration are translated into the

following linear system of equations
(

AP 0

0 AT

)(

CP

CT

)

= 0, (3.52)

with

CP ≡ (Cl, Ct, Dl, Dt)
t, CT ≡ (Ct′ , Dt′)

t, (3.53)

where the superscript t denotes transposition, and the corresponding matrices are:

AP =













β4(qR) −l(l+ 1)k
q β1(kR) β̃4(qR) −l(l+ 1)k

q β̃1(kR)

−β1(qR) k
q β3(kR) −β̃1(qR) k

q β̃3(kR)

β4(qa) −l(l+ 1)k
qβ1(ka) β̃4(qa) −l(l+ 1)k

q β̃1(ka)

−β1(qa)
k
q β3(ka) −β̃1(qa)

k
q β̃3(ka)













(3.54)

and

AT =

(

β1(kR) β̃1(kR)

β1(ka) β̃1(ka)

)

(3.55)

Here, we have introduced the yl–counterpart of the β-functions:

β̃1(z) ≡ d

dz

(

yl(z)

z

)

β̃2(z) ≡ d2yl(z)

d z2

β̃3(z) ≡ 1

2

[

β̃2(z) + (l + 2)(l − 1)
yl(z)

z2

]

β̃4(z) ≡ β̃2(z) −
λ

2µ
yl(z). (3.56)

Again, in order to have solutions to the homogeneous system (3.52) other than the trivial

one CP = CT = 0, we must impose the compatibility condition6

(det AP ) · (det AT ) = 0, (3.57)

6Strictly speaking, the boundary conditions are not a linear system in the set of constants

(Cl, Ct, Dl, Ct, Ct′ , Dt′), because, by virtue of (3.51), equation (3.52) must be suplemented by the con-

dition Dt′Ct = Dt′Ct. Nevertheless, the natural splitting of the system of equations (3.52) into a 4 × 4

system and a 2 × 2 one allows us working either with four independent constants (Ct′ , and thus Dt′

being zero) or with two independent constants (CP = 0), the aforementioned suplementary condition

being trivially satisfied in both cases.
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giving rise again to two families of normal modes to which we shall extend the solid

sphere’s terminology, calling them spheroidal and toroidal modes as well. The left hand

side of the above equation is a function of the dimensionless parameters kR, σ and

η ≡ a/R. Thus, the eigenvalues will be in general functions of the sphere’s elastic

properties, as described by σ, and the sphere’s geometry, as described by η.

3.4.2 Spheroidal modes

This family of solutions is characterized by the eigenvalue equation

det AP = 0, (3.58)

allowing solutions satisfying

AP · CP = 0, CT = 0. (3.59)

We shall label the solutions to (3.58) kP
nl, for, once again, the eigenvalue equation is

independent of m, giving rise to a degenerate frequency spectrum. The above equations

are rather cumbersome, as they involve rank four matrices. The simpler case is l = 0,

which, as we know, is purely radial, and has the following eigenvalue equation:

β4(qR)β̃4(qa) − β4(qa)β̃4(qR) = 0, (3.60)

with Cl and Dl solutions of the linear homogeneous system

(

β4(qR) β̃4(qR)

β4(qa) β̃4(qa)

)(

Cl

Dl

)

= 0. (3.61)

Spheroidal eigenvalues do depend both on σ and η. In Table 3.3 we list the first

spheroidal eigenvalues (and the corresponding frequencies for an aluminium sample with

R = 1.5m) for σ = 1/3 and η = 0.25, 0.50 and 0.75. Although the order of the

different roots varies with η, the first quadrupolar frequency is always the lowest one in

the spheroidal family. Numerical solution of the eigenvalue equation shows that kP
nl has a

dependence on η which, qualitatively, is given by n. In fact, the first root for modes with

l ≥ 2 is always a decreasing function of η (cf. figure 3.7), this property being also shared

by the first monopolar mode; when n = 2 (and for n = 1 when l = 1) the root oscillates

slightly in a pattern shown in figure 3.8; and, finally, for n ≥ 3, kP
nl diverges when η → 1

(thin shell limit), this divergence appearing also in monopolar and dipolar modes for

n > 1 (figure 3.9). Thus, a thin shell has, at most, two eigenfrequencies for each l, and
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(l, n) kP
nlR (Ctl, Dll, Dtl) ν (kHz)

η = 0.25

1 (2, 1) 2.491216 (0.303268, 0.003210, -0.012471) 0.820248

2 (1, 1) 3.700662 (1.056228, -0.027622, 0.097136) 1.218465

3 (3, 1) 3.894918 (0.159434, 0.000441, -0.002232) 1.282425

4 (2, 2) 4.912235 (0.323602, 0.019483, -0.069335) 1.617383

5 (0, 1) 5.048421 (0.000000, -0.179998, 0.000000) 1.662223

6 (4, 1) 5.056670 (0.078462, 0.000027, -0.000203) 1.664939

7 (5, 1) 6.112869 (0.039120, 0.000001, -0.000015) 2.012699

8 (3, 2) 6.586822 (0.194668, 0.007004, -0.032137) 2.168751

9 (6, 1) 7.125845 (0.020134, 0.000000, -0.000001) 2.346227

η = 0.50

1 (2, 1) 1.943404 (0.150106, 0.003041, -0.011338) 0.639877

2 (3, 1) 3.168814 (0.072334, 0.001346, -0.006256) 1.043351

3 (0, 1) 3.969140 (0.000000, -0.631168, 0.000000) 1.306863

4 (1, 1) 3.998811 (1.183588, -0.253215, 0.540663) 1.316633

5 (4, 1) 4.445421 (0.042265, 0.000520, -0.003362) 1.463682

6 (2, 2) 5.064527 (0.372629, 0.005133, -0.014444) 1.667526

7 (5, 1) 5.697438 (0.026191, 0.000160, -0.001540) 1.875916

8 (3, 2) 6.517863 (0.180908, 0.021559, -0.058763) 2.146046

9 (6, 1) 6.880729 (0.016035, 0.000038, -0.000570) 2.265521

η = 0.75

1 (2, 1) 1.449650 (0.112520, 0.001376, -0.005086) 0.477306

2 (3, 1) 2.068307 (0.041973, 0.000208, -0.000980) 0.681002

3 (4, 1) 2.828082 (0.018489, 0.000046, -0.000309) 0.931163

4 (0, 1) 3.265239 (0.000000, -0.901291, 0.000000) 1.075100

5 (5, 1) 3.742582 (0.008995, 0.000015, -0.000149) 1.232268

6 (1, 1) 3.877391 (1.148976, -0.676016, 0.804162) 1.276654

7 (6, 1) 4.758597 (0.004698, 0.000006, -0.000090) 1.566797

8 (2, 2) 5.215992 (0.455499, -0.197532, 0.204720) 1.717397

9 (7, 1) 5.835086 (0.002588, 0.000003, -0.000059) 1.921237

Table 3.3. Roots and relative weights of the transverse and longitudinal solutions

superposed in spheroidal normal modes for different values of η and σ = 1/3.
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Figure 3.7. Spheroidal eigenvalues with finite limit for η = 1. The graphic shows

the decreasing profile shared by the first monopolar mode and modes with n = 1

and l ≥ 2.

just one monopolar and dipolar modes of vibration. This cut–off in the spectrum can be

seen analytically when l = 0. In this case, the eigenvalue equation (3.60), becomes, for η

close to 1,

0 = β4(qR)
dβ̃4(qR)

d (qR)
− dβ4(qR)

d (qR)
β̃4(qR) =

(

λ

2µ
+ 1

)2
1

(qR)2
−
(

3λ

µ
+ 2

)

1

(qR)4
,

having thus just one eigenvalue, namely

kP
10R = 2

√

(1 + σ)/(1 − σ) (η = 1). (3.62)

The asymptotic behaviour of spheroidal roots is obtained from the asymptotic ex-

pansions of spherical Bessel functions [59]

jl(z) ≈
sin(z − lφ/2)

z
, yl(z) ≈ (−)l+1 cos(z + lπ/2)

z
, (3.63)
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Figure 3.8. Spheroidal eigenvalues with finite limit for η = 1. This figure displays

the oscillatory behaviour of roots such that n = 2 and l ≥ 2, which also appears

in the first dipolar mode.

which are valid for large z. Using the above approximations, we can easily obtain

det Ap =

(

1 +
λ

2µ

)2
q2

4k2η2

1

(kR)4
sin[kR(1− η)] sin[qR(1− η)]+O

(

1

(kR)6η3

)

. (3.64)

This equation gives us two subfamilies of spheroidal eigenvalues in the asymptotic regime

of large kR and kRη, namely

kP1

nl R =
nπ

1 − η
kP2

nl R =

√

2 − 2σ

1 − 2σ

nπ

1 − η
, (3.65)

which have the remarkable property of being independent of l. The divergence of the

roots as η → 1 also appears explicitly. Both properties are already present in figure 3.9,

where we observe some diverging roots with n = 3 (or n = 2 for l = 1) becoming closer

as their values increase, and approaching the curve kR = π/(1 − η) (we take n = 1 for
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Figure 3.9. Spheroidal eigenvalues diverging as η → 1. This behaviour appears

for the second and higher monopolar and dipolar eigenvalues, and for n ≥ 3 when

l ≥ 2. Dotted lines display the asymptotic values to which the roots approach for

large values of kR. In ascending order, the eigenvalues represented are k21, k32,

k33, k34 (this group approaching the first asymptotic curve) and k20.

kP1

nl as the roots considered are the first divergent ones for each l). In this figure appears

also the first monopole eigenvalue, whose asymptotic expression must be obtained from

equations (3.60), yielding

kP
0nR =

√

2 − 2σ

1 − 2σ
nπ, (3.66)

which becomes kP
0nR = 2nπ for σ = 1/3. Thus, the first divergent eigenvalue of l = 0

approaches the curve kR = 2π/(1 − η), as shown in the figure.

Provided (3.58) holds, the first of equations (3.59) can be solved for the quotients

Ctl ≡
Ctq

Clk
, Dll ≡

Dlq

Clk
, Dtl ≡

Dtq

Clk
, (3.67)

which have rather cumbersome explicit expressions and depend not only on kP
nl but also
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on σ and η. With these definitions, the final form of the spheroidal normal modes of

vibration for the hollow sphere is given by

sP
nlm(r, θ, φ) = Anl(r)Ylm(θ, φ)n − iBnl(r)n × LYlm(θ, φ), (3.68)

with radial functions

Anl(r) = C(n, l)

[

djl(q
P
nlr)

d (qP
nlr)

− Ctl l(l+ 1)
jl(k

P
nlr)

kP
nlr

+

Dll
dyl(q

P
nlr)

d (qP
nlr)

−Dtl l(l+ 1)
yl(k

P
nlr)

kP
nlr

]

, (3.69)

Bnl(r) = C(n, l)

[

jl(q
P
nlr)

qP
nlr

− Ctl
1

kP
nlr

d

dr
{r jl(kP

nlr)}+

Dll
yl(q

P
nlr)

qP
nlr

−Dtl
1

kP
nlr

d

dr
{r yl(k

P
nlr)}

]

, (3.70)

where C(n, l) is, again, free up to normalization.

Monopolar modes have simpler expressions, due to the fact that they are purely

normal. They can be written as

sP
n00(r, θ, φ) = An0(r)n, (3.71)

with

An0(r) = C(n, 0)

[

β̃4(k
P
n0R)

dj0(q
P
n0r)

d(qP
n0r)

− β4(k
P
n0R)

dy0(q
P
n0r)

d(qP
n0r)

]

. (3.72)

The shape deformations induced by normal modes of vibration in a hollow sphere are

identical to those appearing in the solid sphere (see figure 3.4 in the preceeding section),

the only difference between the two cases being the form of the radial functions Anl(r)

and Bnl(r).

The coefficients Ctl, Dll and Dtl measure the relative weights of the jl and yl con-

tributions of transverse and longitudinal solutions to the normal modes of vibration. In

Table 3.3 we give their values for some values of η and (l, n). Their dependence on the

Poisson’s ratio is found to be qualitatively the same as that of the coefficients Ctq/Clk

of the solid sphere (cf. figure 3.2; the eigenvalues also show a profile similar to that of

figure 3.1, which corresponds to the solid sphere, for any η). As regards the dependence

of these weights on the parameter η, it is displayed (for σ = 1/3 and the first few roots)

in figure 3.10 for the jl contribution of st, and in figure 3.11 for the yl transverse and

longitudinal parts. As expected, Dtl and Dll both vanish for η = 0.
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Figure 3.10. Relative weights of the jl transverse part of spheroidal normal modes,

as a function of η. Labels denote the indices (n, l).

Let us now turn our attention to the radial functions Anl(r) and Bnl(r). We shall fix

the normalization constant appearing in those functions as follows
∫

V

ρ (sP
nlm) · (sP

n′l′m′)∗ dV = M δnn′δll′δmm′ , (3.73)

where M denotes the total mass of the solid, i.e., when ρ =const.,

M =
4π

3
ρR3(1 − η3).

In this case, the angular dependence can be immediately integrated using the orthogo-

nality relations of vector spherical harmonics (3.20), so that the normalization condition

becomes
∫ R

Rη

r2 dr
(

A2
nl(r) + l(l + 1)B2

nl(r)
)

=
4π

3
R3(1 − η3). (3.74)

Figures 3.12 and 3.13 show Anl(r) and Bnl(r), with the above normalization, for

the first two monopolar and quadrupolar eigenvalues and the values 0, 0.375 and 0.750
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Figure 3.11. Relative weights, as a function of η, for the yl longitudinal (Dll) and

transverse (Dtl) contributions to a spheroidal normal mode. Labels indicate the

indices (n, l).
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Figure 3.12. Radial functions for the first two monopolar eigenvalues in the

spheroidal family, calculated at different values of the parameter η.

for the parameter η. For observational purposes, the value that these functions take

at the sphere’s outer surface is of the utmost importance, because measurements of the

deformations will be performed there. For instance, detection of the second quadrupolar

mode by measurement of normal displacements on the surface of a solid sphere is severely

hadicapped by the small value of A22(R) when η = 0 (cf. figure 3.13). As can be observed

in the figures, the normal and tangential amplitudes on the surface show little dependence

on η, with the exception of A22(R), which shows a significant relative improvement with

increasing η.

3.4.3 Toroidal modes

Toroidal eigenvalues are solutions to equation (3.57) satisfying

det AT = β1(kR)β̃1(ka) − β(ka)β̃1(kR) = 0, (3.75)
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Figure 3.13. Radial functions for the first two quadrupolar eigenvalues in the

spheroidal family, calculated at different values of the parameter η.
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and giving rise to purely tangential solutions with

AT · CT = 0 CP = 0. (3.76)

Again, we are left with a degenerate spectrum kT
nl which is not dependent on the mate-

rial’s Poisson’s ratio. In Table 3.4 we give a list of the first solutions to equation (3.75)

for some values of the parameter η, as well as the corresponding frequencies for the usual

aluminium sample. As in the case of the solid sphere, the first quadrupolar mode of the

toroidal family happens to be the absolute minimum in the hollow sphere’s spectrum.

In the thin shell limit (η → 1), the eigenvalue equation has the form

β1(kR)
dβ̃1(kR)

d (kR)
− β̃1(kR)

dβ1(kR)

d (kR)
= 0.

Using standard properties of spherical Bessel functions, the following useful relation is

easily proved7

β1(z)
dβ̃1(z)

d z
− β̃1(z)

dβ1(z)

d z
= z−6

[

z2 + 2 − l(l + 1)
]

,

whence toroidal modes in the thin shell limit have the explicit value

kT
1lR =

√

l(l + 1) − 2 (η = 1, l > 1). (3.77)

When plotting kT
nl as a function of η, this property appears as a divergence of the first

monopolar mode and all modes with n ≥ 2 when η → 1 (cf. figures 3.15 and 3.16). On

the other hand, asymptotic expansion yields

det AT = (−)l+1 1

η2(kR)4
sin[kR (1 − η)] +O

(

1

(kR)6η3

)

, (3.78)

so that, for large values of kR and ka, the eigenvalues adopt the approximate form

kT
nlR ≈ (n− 1)π

1 − η
, (3.79)

7The recurrence relationship j′
l
(z) = j

l−1
(z)− (l +1)z−1j

l
(z), where prime denotes derivative, yields

zβ1(z) = jl−1(z) − (l + 2)z−1jl(z), z3β′
1(z) = [(l + 2)(l + 3) − z2]jl(z) − 4zjl−1(z),

with analogous expressions for β̃1 and β̃′
1. Using these equations and the identity

jl(z)yl−1(z) − jl−1(z)yl(z) = z−2,

the given relationship follows.
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(l, n) kT
nlR ν (kHz)

η = 0.25

1 (2, 1) 2.498049 0.822498

2 (3, 1) 3.864003 1.272246

3 (4, 1) 5.094490 1.677392

4 (1, 1) 5.857718 1.928689

5 (5, 1) 6.265748 2.063035

6 (2, 2) 7.102061 2.338397

7 (6, 1) 7.403594 2.437678

8 (3, 2) 8.421440 2.772810

9 (7, 1) 8.519868 2.805218

10 (1, 2) 9.570403 3.151113

η = 0.50

1 (2, 1) 2.435374 0.801861

2 (3, 1) 3.813204 1.255520

3 (4, 1) 5.061620 1.666569

4 (5, 1) 6.246701 2.056764

5 (1, 1) 7.111576 2.341529

6 (6, 1) 7.393275 2.434281

7 (2, 2) 7.742637 2.549310

8 (7, 1) 8.514524 2.803458

9 (3, 2) 8.605614 2.833451

10 (8, 1) 9.618318 3.166889

(l, n) kT
nlR ν (kHz)

η = 0.75

1 (2, 1) 2.247062 0.739859

2 (3, 1) 3.550788 1.169118

3 (4, 1) 4.760115 1.567297

4 (5, 1) 5.931117 1.952856

5 (6, 1) 7.080886 2.331424

6 (7, 1) 8.216433 2.705310

7 (8, 1) 9.341120 3.075620

8 (9, 1) 10.456733 3.442942

9 (10, 1) 11.564321 3.807623

10 (11, 1) 12.664570 4.169886

η = 1

1 (2, 1) 2.000000 0.658512

2 (3, 1) 3.162278 1.041199

3 (4, 1) 4.242641 1.396915

4 (5, 1) 5.291503 1.742259

5 (6, 1) 6.324555 2.082398

6 (7, 1) 7.348469 2.419528

7 (8, 1) 8.366600 2.754754

8 (9, 1) 9.380832 3.088695

9 (10, 1) 10.392305 3.421729

10 (11, 1) 11.401754 3.754096

Table 3.4. First toroidal eigenvalues for different values of the parameter η. The

limit case of the thin shell, which presents just one root for each multipole, can be

calculated analytically. The frequencies listed are those of an aluminium prototype

with R = 1.5 m and vt = 3160 ms−1.
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where the factor (n− 1) takes into account the fact that the first root of each multipole

remains finite and does not enter in the asymptotic regime (for dipolar eigenvalues, (n−1)

must be replaced by n, because, as has been shown, there are no roots with l = 1 and

finite limit when η = 1). As in the case of spheroidal roots, kT
nlR becomes asymptotically

independent of l, and we have a convergence of roots with the same value of n. This

behaviour is effectively found in numerical calculations, as is reflected in figure 3.15.
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Figure 3.14. Radial functions for the two first quadrupolar normal modes of the

toroidal family.

Finally, the spatial part of toroidal normal modes of vibration for the hollow sphere

can be written

sT
nlm(r, θ, φ) = Tnl(r) iLYlm (θ, φ), (3.80)

where

Tnl(r) = C′(n, l)[β̃1(k
T
nlR)jl(k

T
nlr) − β1(k

T
nlR)yl(k

T
nlr)(k

T
nlr), (3.81)

where C′(n, l) is a normalization constant, which can be fixed imposing, for instance,

∫

V

(sT
nlm) · (sT

n′l′m′)∗ ρ dV = M δnn′δll′δmm′ . (3.82)
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Figure 3.15. Toroidal eigenvalues as a function of η. The above figure shows

roots with finite limit as η → 1. The dotted lines represent the asymptotic values

kR = π(1 − η)−1 and kR = 2π(1 − η)−1.

For ρ =const., the above condition becomes (cf. (3.20))

∫ R

Rη

T 2
nlr

2dr =
4π

3l(l+ 1)
R3(1 − η3). (3.83)

In figure 3.14 we plot, using this normalization, T12 and T22 for different values of η,

including the solid sphere case. We observe again that the values of the radial functions

at the sphere’s outer surface do not vary significantly with η.

3.5 Deviations from spherical symmetry

To close our study of spherical elastic bodies, we address the problem of how small

deviations from spherical symmetry affect the spectrum properties. Our main motivation

is to take into account the deformations induced in a perfectly spheric and homogeneous

sphere by its being suspended in a homogeneous gravitational field. The previous calcu-

lations have ended in a set of somewhat cumbersome equations describing the solutions

to the unperturbed problem, which are little adapted to further manipulation. We begin,
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Figure 3.16. Toroidal eigenvalues as a function of η. The above figure shows roots

with finite divergent as η → 1. The dotted lines represent the asymptotic values

kR = π(1 − η)−1 and kR = 2π(1 − η)−1.

thus, with a reformulation of the equations of motion in the language of linear differen-

tial operators in Hilbert spaces. This will allow us taking advantage of the well-known

formalism of eigenfunction expansions and Green functions, which permit an elegant for-

mulation of the perturbed problem and a quick solution, at least from a formal point of

view, in subsection x3.5.2. There, we give perturbative expansions for the spectrum of

a solid which is not exactly spheric and/or has small density inhomogeneities. In order

to see this formalism at work, we calculate in x3.6 the actual shape deformation and

density variations caused by the suspension of a solid sphere in the Earth’s gravitational

field, for a general surface suspension; and, finally, give a numerical example with the

calculation of the threefold splitting of the first quadrupole spheroidal eigenfrequency of

the solid sphere as an outcome of an axial suspension. For the sake of simplicity, we limit

ourselves in the following to the solid sphere, but, as we have shown, the generalization

of our expressions to the hollow sphere’s case can be easily undertaken.
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3.5.1 Unpertubed problem: notation

In order to take advantage of the eigenvalue expansions of Green’s functions associated

to partial differential equations, let us reformulate our unperturbed problem—i.e., the

determination of the normal modes of vibration of an elastic solid—in a notation which

makes explicit that we are dealing with an eigenvalue problem in a Hilbert space.

Let V and S denote, respectively, the three-dimensional domain occupied by the body

at hand and its surface. Given two vector fields on V , say A(x) and B(x), we define

their Hermitian scalar product (A,B) in the usual way:

(A,B) ≡
∫

V

A∗ · B dV, (3.84)

where an asterisc denotes complex conjugation. This product endows the set of square

integrable vector fields over V with the structure of a Hilbert space which we shall term

H. On this space, linear differential operators are represented by 3 × 3 matrices whose

elements are scalar differential operators. In particular, we shall introduce the linear

operators L and T given by

(L)ij ≡ (1 + h)∂i∂j + δij∂k∂k, (3.85)

(T)ij ≡ hni∂j + 2δijnk∂k + ǫiklǫlmjnk∂m, (3.86)

where h is the real quotient λ/µ, n denotes the outward normal to S and ǫijk is Levi-

Civita’s totally antisymmetric tensor. The following relation between these operators is

easily seen to hold for arbitrary vector fields A and B:

(A,LB) = (LA,B) +

∫

S

(A∗ · TB − B · TA∗) dS, (3.87)

so that L is a self–adjoint operator when acting on the subspace Hh of vector fields

satisfying homogeneous boundary conditions, i.e.,

Hh ≡ {A ∈ H | TA|S = 0}. (3.88)

Within this formalism, the problem of determining the normal modes of vibration of the

given solid translates into the the eigenvalue problem

LsN (x) = − ρ

µ
ω2

NsN (x), sN ∈ Hh. (3.89)

L being a self–adjoint operator, the above equations admit a denumerably infinite set of

solutions (labelled here with a generic index N), with real spectrum. Moreover, these



3.5. Deviations from spherical symmetry 69

solutions form a complete set over Hh and, thus, the following closure relation holds:

∑

N

s∗N(x′) ⊗ sN (x) =
M

ρ
I δ(3)(x − x′), (3.90)

where ⊗ denotes the tensor product, I is the unit matrix, δ(3)(x − x′) stands for the

three–dimensional Dirac’s function, and the eigenvectors have been normalized so that

(ρ sN , sL) = δLNM. (3.91)

The previous sections have been devoted to a detailed analysis of the eigenvectors of L

when V is a spherically symmetric domain.

When dealing with small perturbations of equations (3.89) we shall make use of their

associated Green’s operator G(x,x′, ω), which is defined[95] to be the solution to

LG +
ρω2

µ
G = −I

1

ρ
δ(3)(x − x′), (3.92)

satisfying homogeneous boundary conditions on S:

TG|S = 0. (3.93)

From the closure relationship (3.90) the following expansion of G in terms of eigenfunc-

tions is readily obtained

G(x,x′, ω) =
∑

N

µ

ρM

s∗N(x′) ⊗ sN (x)

ω2
N − ω2

. (3.94)

3.5.2 Peturbed problem: formal solution

As previously discussed, two types of perturbation will be considered:

Density variation. The deformation changes the uniform density to a function of the

point:

ρ→ ρ (1 − ζg(x)) (3.95)

We denote by ζ a small, dimensionless perturbative parameter, and we will con-

sider quantities up to first order in it. On the other hand, g(x) is an arbitrary,

dimensionless function describing the inhomogenities of the body. The above den-

sity variation will induce a modification in the differential equations (3.89) given

by

L → [1 − ζg(x)]−1
L = [1 + ζg(x)] L +O(ζ2)
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Boundary variation. The surface S′ on which we shall impose boundary conditions

will slightly depart from the perfectly spherical shape, and will be given by an

equation of the form

S′ : r = R(1 + ζ f(θ, φ)) (f < 0 ⇒ V ′ ⊂ V ), (3.96)

where V ′ denotes the volume enclosed by S′, and R is the radius of a reference

sphere enclosing this perturbed, non–spherical volume.

The problem to solve as a perturbation of (3.89) can thus be written as:

(1 + ζ g)Ls(x) = −k2s(x) , Ts|S′ = 0, (3.97)

where k2 = ρω2/µ is the new, perturbed eigenvalue. Multiplying the first of the above

equation by the previously introduced Green operator G(x,x′, ω), and substracting it

from s times equation (3.92), we obtain

(GL − LG)s(x) + ζ g(x) GLs(x) =
1

ρ
δ(3)(x − x′) s(x)

We can now integrate over x′ in the perturbed body, and use the property (3.87)—which

is valid for an arbitrary volume and its corresponding boundary—and the boundary

conditions satisfied by s, to obtain the integral form of equations (3.97):

s(x) = −ρ
∫

S′

TG(x, S′, ω)s(S′) dS′ + ρζ

∫

V ′

g(x′)G(x,x′, ω)Ls(x′) dV ′ (3.98)

Introducing in the above integral equation the series (3.94) for the Green function, we

can recast it as

s(x) =
ρ

M

∑

N

(DN [s] +BN [s]) (k2 − k2
N )−1 sN (x) (3.99)

where the scalar operators DN [.] and BN [.] are defined, up to first order in ζ as

DN [A] ≡ − ρ

M
ζ (sN ,LA), BN [A] ≡ ρ

M

∫

S′

A · Ts∗N dS′. (3.100)

where (, ) is the scalar product over V defined in the previous section.

If we let ζ → 0 and, simultaneously, k2 → k2
nl, for a fixed N—i.e., if we are looking

for the small perturbations of the eigenvalue k2
nl—we must have s → ∑

m Cm sm, with

requisite constants Cm, where m is the degeneracy index of k2
nl. Introducing these limits

into (3.99) and taking into account the orthogonality of the basis, we get

lim
k2→k2

nl

(k2 − k2
nl)Cm = lim

ζ→0

∑

m′

(Bm +Dm)[sm′ ]Cm′ (3.101)

Thus,



3.5. Deviations from spherical symmetry 71

the vectors {Cm} diagonalize the matrix

Bmm′ +Dmm′ ≡ (Bm +Dm)[sm′ ],

its proper values being the first order corrections to the eigenvalue k2
nl.

Thus, the problem of determining the effect on the solid’s spectrum of small shape

and density pertubations is reduced to an analysis of the matrix D + B. So far, the

formalism introduced is general enough to tackle arbitrary shapes of the unperturbed

solid. Choosing a particular geometry and solving its corresponding eigenvalue equations,

we will be able to compute the aformentioned matrices. In the following subsections, we

address this problem for the case of a solid sphere.

3.5.3 Solid sphere pertubations

Let us compute more explicit expressions for the matrices introduced above when V

is an spherical domain, and the unperturbed eigenvalue k2
nl belongs into the spheroidal

family. We shall also limit ourselves to the case of axisymmetric perturbations, i.e., to

the case that the functions g and f describing the perturbation can be expressed by the

linear expansions

g(x) = g(r, θ) =
∑

l

gl(r)Yl0(θ), f(θ) =
∑

l

flYl0(θ). (3.102)

Using the definition (3.100) of D, and the fact that sm is an eigenvector of L, we get

Dmm′ = ζ
ρ

M
k2

nl (sm, g sm′). (3.103)

The descomposition (3.102) of the function g(x) allows to write the integrand in the

expression for D as a linear combination of products three spherical harmonics. The

angular integration can then be performed with the aid of the equation
∫

Y ∗
l m Yl m′ Yl′0 dΩ = [(2l′ + 1)/4π]1/2Cl′

0 C
l′

m′δm,m′ .

with Cl′

m′ ≡ C(L l l;m − m′,m′,m − m′), where C(l1 l2 l3;m1m2m3) is the Clebsch–

Gordan symbol with the Condon-Shortley sign convention [43]. Some rather lengthy

algebra, involving the above expressions and the explicit form of the eigenvectors sm,

yields the following equation for Dmm′ ,

Dmm′ = δmm′ζ

l
∑

l′=0

{

N2l′ C
2l′

m′ + E2l′

(

am
+ C2l′

m′+1 + am
− C2l′

m′−1 +m2C2l′

m′

)}

(3.104)
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where am
± ≡ (l ∓m)(l ±m+ 1)/2, and

Nl′ ≡
k2

nl

M

√

2l′ + 1

4π
Cl′

0

∫ R

0

A2
nl(r)gl′ (r) r

2 ρ dr (3.105)

El′ ≡
k2

nl

M

√

2l′ + 1

4π
Cl′

0

∫ R

0

B2
nl(r)gl′ (r) r

2 dr (3.106)

In the above equations, the pair (n, l) label the mode being perturbed, and Anl(r), Bnl(r)

denote its corresponding radial functions.

Analogous considerations and more lengthy algebra, allows expressing the matrix

Bmm′ in terms of the components fl of the shape deformation in the following form

Bmm′ = ζ δmm′

ρR

M

l
∑

l′=0

√

4l′ + 1

4π
C2l′

0 f2l′

2
∑

t=−2

Q(t)
m C2l′

m′+t, (3.107)

where the coefficients Q
(t)
m have the explicit form

Q(±2)
m = am

± am±1
± B2

nl (3.108)

Q(±1)
m = am

± [4m(m± 1) − (k2
nlR)2]B2

nl (3.109)

Q(0)
mm = [2am

+ am+1
− + 2m2(m2 − 1 − (k2

nlR)2)]B2
nl + 5(k2

nlR)2A2
nl

+2h(h+ 2)−1(2Anl − l(l + 1)Bnl)
2 − 4l(l+ 1)AnlBnl (3.110)

In the above equations, the functions Anl and Bnl are taken at r = R.

As our expressions show, the matrices Bmm′ and Dmm′ have already diagonal form

for axisymmetric pertubations, so that Bmm +Dmm gives us directly the mth correction

to k2
nl. Thus, the perturbation would induce a splitting of the degenerate modes of

vibration of a perfect sphere. We note also that only even components, up to 2l, of the

functions f and g are needed to compute the corrections for a mode with multipole l.

For instance, it suffices to know f0,2,4 and g0,2,4(r) to compute the corrections to the

quadrupole frequencies induced by these deformations. It is also worth noting that this

property does not depend on the peturbation being axisymmetric.

3.6 The suspended sphere

We will treat in this section the problem of the elastic deformation of a sphere when

suspended, by means of an arbitrary surface traction, in a homogenous gravitational

field. This deformation, described by a vector field z (with dimensions of length), will
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give rise to density as well as shape deformations. In the notation introduced in the

previous section to characterize small deviations,

f(θ, φ) = R−1z · n|S ζg(x) = ∇ · z (3.111)

Once the vector field z is known we shall be able to calculate the perturbations to the

spectrum, using the formalism just described.

3.6.1 General solution

The field of deformations z for a solid under the action of a constant force per unit

volume (−ak) (a being 9.8 ms−2) and a field of tractions on its surface (force per unit

area) T, is a solution of the equations

Lz = − ζ

R
k, Tz|S =

1

µ
T (3.112)

where the parameter ζ is

ζ ≡ Rρa

µ
, (3.113)

(which shall be small for real samples), and T is subjected to the further conditions

∫

S

(n × T) dS = 0

∫

S

T dS =
4πR3

3
aρk (3.114)

so that it counteracts the total gravitational force on the sphere and produces no total

torque, allowing an equilibrium configuration.

The solution to equations (3.112) is obtained by adding to a particular solution the

suitable linear combination of solutions of the homogeneous equation to satisfy the bound-

ary conditions. For the particular solution to (3.112) we can take (cf. [80], x174):

zp =
ζ(π/3)1/2

5R(h+ 2)
∇(r3Y10)

= ζ
1

5(2 + h)

√

π

3

r2

R
(3Y10n− in× LY10) (3.115)

while the solutions of the homogeneous equation are (cf. [80], x172):

z
(1)
lm = R2−l∇(rlYlm) = R2−lrl−1(Ylmn− in × LYlm) (3.116)

z
(2)
lm = R1−liL(rlYlm) = R1−lrliLYlm (3.117)

z
(3)
lm = R−lrl+1((l +Al)Ylmn− in× LYlm) (3.118)

Al = −2
(h+ 3)l+ 1

(h+ 1)l + 3h+ 5
(3.119)
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which are three linearly independent vectors for each pair (l,m). The solution of (3.112)

satisfying the non–homogeneous boundary conditions will have the form

z = zp +
∞
∑

l=0

l
∑

m=−l

3
∑

i=1

C
(i)
lmz

(i)
lm (3.120)

with C
(i)
lm requisite non-dimensional constants. To impose the boundary conditions, let

us represent the surface traction T as a linear combination of vector spherical harmonics:

T = (aρ0R)
∑

lm

(almYlmn + blmiLYlm − dlmin× LYlm) (3.121)

where alm, blm, dlm are non-dimensional constants. Then, as vector spherical harmonics

are orthogonal, the boundary conditions are:

3
∑

i=1

C
(i)
lmb[z

(i)
lm] + δl1δm0b[zp] = ζ(almYlmn + blmiLYlm − dlmin× LYlm) (3.122)

where the operator b[.] is given by (3.22). Then, introducing using the explicit expressions

for the vectors z
(i)
lm and zp and equating the coefficients for each vector spherical harmonic,

we obtain the following relations between the tensions applied ( as described by the

constants alm, blm and dlm) and the resulting deformation (as described by the constans

C
(i)
lm):

for l6=1 : C
(1)
lm = ζ

Dl

l − 1

(

2l +Al

2
alm − El dlm

)

(3.123)

C
(2)
lm = ζ

1

l − 1
blm (3.124)

C
(3)
lm = ζ Dl(l dlm − alm) (3.125)

with

El =
(l + 1)2(l − 2) + h(l + 1)(l2 − l − 3)

5 + l + h(l + 3)
(3.126)

Dl =
5 + l+ h(l + 3)

(1 + l)2 − l + h(1 + (1 + l)2)
(3.127)

and

for l=1 : C
(1)
1m and C

(2)
1m arbitrary (3.128)

C
(3)
1m = ζ

2h+ 3

3h+ 2

(

−1

2
a1m + δm0

√

π

3

2

5h+ 5

)

(3.129)
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The arbitrariness of C
(1,2)
1m should have to be expected, as these constants give rise to

solid movements (displacements and rotations) of the sphere as a whole. Also, equation

(3.122) for l = 1 imposes the following conditions on the given tensions:

b1m = 0 a1m + 2d1m = 2

√

π

3
δm0 (3.130)

These are simply conditions (3.114), as is shown by using the following formulæ for the

integration of vector spherical harmonics8:
√

3

2π

∫

Ylmn dΩ = δl1((δm−1 − δm1)i − i(δm−1 + δm1)j +
√

2δm0k

∫

in× LYlm dΩ = −2

∫

Ylmn dΩ

∫

iLYlm dΩ = 0

which, used with expression (3.121) for T, give
√

3

2π
(R3ρ a)−1

∫

S

T dS = (a1−1 − a11 + 2d1−1 − 2d11)i

−i(a11 + a1−1 + 2d11 + 2d1−1)j

+
√

2(a10 + 2d10)k (3.131)
∫

∂E

(n × T) dS ∝ (b1−1 − b11)i − i(b11 + b1−1)j + b10k (3.132)

whence
∫

S

T dS = R3ρ
4π

3
k ⇐⇒ a1m + 2d1m = 2

√

π

3
δm0 (3.133)

∫

S

(n × T) dS = 0 ⇐⇒ b1m = 0 (3.134)

We have thus obtained the field of elastic displacements, z, of a sphere subjected to

arbitrary surface tensions but in equilibrium in a homogenous gravitational field. We

can now compute the series for the functions f and g, which will allow the calculus

of the perturbations to the proper fequencies of the suspended sphere. As perturbative

parameter, we shall use ζ = aRρ/µ, which appears naturally in our expressions and gives

the size of the deformations produced by the suspension.

8The integrations are easily done noting that
√

3

2π
n = (Y ∗

1 −1 − Y ∗
11)i − i(Y ∗

1−1 + Y ∗
11)j +

√
2Y ∗

10k
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3.6.2 Functions f and g for the suspended sphere

Shape deformation:

Due to the deformation of the supended sphere, its surface takes the form given by

the equation:

S′ : r = R+ z · n|r=R (3.135)

whence

ζf(θ, φ) =
1

R
z · n|r=R =

∑

lm

[lC
(1)
lm + (l +Al)C

(3)
lm ]Ylm (3.136)

Although the undeformed sphere of radius R does not contain the suspended one, we

can take R as reference radius, for we know that we can choose it up to a constant, and

our aim is to compare the free and “suspended” spectra. Thus,

flm = Dl

(

l(2l+Al)

2(l − 1)
−Al − l

)

alm +Dl

(

l(l+Al) −
lEl

l− 1

)

dlm (3.137)

the above expression being valid only for l even, as these are the terms appearing in the

perturbative series.

Density variation:

Taking into account that ∇ · z(1,2)
lm = 0, the variation of the density will be:

ζg(x) = ∇ · zp +
∑

lm

C
(3)
lm∇ · z(3)

lm (3.138)

The first term gives rise to a contribution to the series in (l,m) for l = 1, and, as this

term does not appear in the perturbative formulæ (3.100), we shall drop it. Thus, using

the form of C
(3)
lm to compute its divergence, we get

ζglm(r) =
( r

R

)l

C
(3)
lm (2l +Al(3 + l)) (l even) (3.139)

3.6.3 Particular case: first quadrupole mode.

In this section we will compute the corrections to the frequency of the first quadrupole

mode of the free sphere with Poisson ration 1/3, i.e. h = 2. Thus, we will take l = 2,

n = 1, for which KR = 2.650 is the unperturbed eigenvalue. In table 3.5 the values of

the constants R3M−1Q
(t)
m are displayed. Besides, we shall consider the case of a constant

normal suspension applied on a spherical cap of width γ = cos θ0 around the North pole

of the sphere, i.e.,

T = Θ(cos θ − γ)
4aρ0R

3(1 − γ2)
n (3.140)
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m\(t) -2 -1 0 1 2

2 1.19293 0.19429 -15.4328 0 0

-2 0 0 -15.4328 0.19429 1.19293

1 1.78939 -2.09442 -13.9349 0.194288 0

-1 0 0.194288 -13.9349 -2.09442 1.78939

0 1.19293 -2.09442 -12.2426 -2.09442 1.19293

Table 3.5. Constants R3M−1Q
(t)
m for h = 2, l = 2, n = 1.

The coefficients alm, blm and dlm for this tension are:

alm = δm0
4

3(1 − γ2)

√

π

2l + 1
(Pl−1(γ) − Pl+1(γ)) blm = dlm = 0 (3.141)

where Pl(x) are the Legendre polynomials. We need the values for l = 0, 2, 4, which are:

a00 =
4
√
π

3(1 + γ)
a20 =

2
√

5π

3
γ a40 =

√
π

2
γ(7γ2 − 3) (3.142)

Using now equation (3.137) and the definitons for Al and Dl we obtain:

f0 =
−320

121
a00 =

−1280
√
π

363(1 + γ)

f2 =
208

17
a20 =

416
√

5π

51
γ

f4 =
26112

529
a40 =

13056
√
π

529
γ(7γ2 − 3)

For the perturbations due to density variations, numerical integration gives

N 0 =
30.343π

1 + γ
N 2 = −71.976πγ N 4 = 10.882πγ(7γ2 − 3)

E0 =
3.455π

1 + γ
E2 = −7.049πγ E4 = 0.957πγ(7γ2 − 3)

The parameter γ will be close to 1 when the width of the suspension is small. So, we

can take γ = 1. Then, the original 5-degenerate eigenvalue K splits into three perturbed

eigenvalues k2
i = K2 + ζ∆i which are given by the above formulæ:

k2
0R

2 = 7.023− 184.068 ζ (3.143)

k2
1R

2 = 7.023 + 345.834 ζ (3.144)

k2
2R

2 = 7.023− 22.2745 ζ (3.145)
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This gives corrections of order 10−3 − 10−4, as ζ ≈ 10−5 − 10−6.



Chapter 4

Quasi–normal modes of vibration for

viscoelastic solids

4.1 Introduction

In chapter 3, we have presented a detailed analysis of the free oscillations of a spher-

ical, perfectly elastic body satisfying a linear constitutive equation relating the stress

and strain tensors (Hooke’s law). It has been shown that a denumerably infinite set of

solutions with periodic time dependence can be found, the so-called normal modes of

vibration, which constitute a basis for constructing any free (and, as we shall show in the

next chapter, driven) solution to the equations of motion. As as result of the conserva-

tive nature of Hooke’s law, it is immediately shown that the total energy of the body is

conserved in such vibrations, and, thus, a perfectly elastic body would oscillate with con-

stant amplitude indefinitely, provided it is not influenced by external forces. But, from an

experimental point of view, it is well known that real bodies, due to their internal struc-

ture, undergo dissipative processes which transform ordered, macroscopic motions into

disordered, molecular motions (that is, heat). As a result of these processes, the periodic

vibrations of a real elastic body are damped, the initial elastic potential energy stored in

the body is eventually dissipated into termal energy, and the amplitude of its oscillations

eventually vanishes after a finite period of time. This damping is usually modelled by

substituting the periodic dependence in cos(ωt) by one of the form exp(−ωt/Q) cos(ωt),

where Q, the quality factor, is a time-independent parameter (which is, however, a func-

tion of frequency). Thus, the quality factor describes the effect of internal friction, and
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can be readily interpreted as the number of oscillations after which the original amplitude

of vibration is reduced by a factor of e−1. Experimental researchers had long devoted

their efforts to the determination of the quality factor of different materials, and metals

in particular (see [130] for a classical account, and [74] for materials proposed for the

construction of cryogenic resonant detectors), which are characterized by a high value

(≈ 107) of Q (see, e.g., [28, 14]). Regarding the frequency spectrum, it is observed [88]

to be very close to that predicted by the elastic model studied in chapter 3. Thus, it

is a common practice, in the literature dealing with gravitational wave detection, to in-

troduce the internal friction by hand as a decreasing exponential in the time dependence

of normal modes—or, what amounts to the same, an ad hoc term in the expressions

resulting from separation of variables in the equations of motion, which gives rise to such

a time dependence (see, e.g. [127, 93, 88]). Such approaches demand the introduction of

experimental values of the quality factor at each frequency considered, as they provide no

means to their calculation from a finite set of parameters characterizing the solid. This

problem can be overcome by the introduction of a suitable theoretical model describing

both the elastic behaviour of the small deformations of the solid, and the dissipation

effects which it undergoes. As mentioned in chapter 2, a wide variety of such models

has been proposed to describe the so–called viscoelastic solids, each one starting from

a given constitutive relation between the stress and strain tensors. In this chapter, we

solve in detail the simplest ones (i.e., the Kelvin-Voigt model, the Maxwell model and the

Standard Linear Model; see chapter 2) for the solid sphere, showing to which degree of

approximation the spectrum and quasi–periodic motions of a free viscoelastic body can

be regarded coincident with that of an ideal elastic body 1. Explicit expressions for the

quality factor (as a function of frequency and the parameters characterizing the model

at hand) are also obtained. The chapter is completed with a brief discussion of possible

generalizations of the aforementioned simple models.

Each model dealt with in the following sections is characterized by a stress-strain

relationship attempting to describe the internal friction appearing in real metals. When

introduced into the equations of motion

∂σij

∂ xj
+ fi = ρ

∂2si

∂ t2
, (4.1)

the constitutive relation gives us a differential equation in the field of displacements

1Using a nomenclature introduced by the researchers on neutron stars, which also behave as a vis-

coelastic body under certain circumstances [75], we call these quasi–periodic motions quasi–normal

modes of vibration.
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s(x, t). We shall look for free (f = 0) solutions to this equation which are separable:

s(x, t) = T (t) s(x), (4.2)

and will find that purely periodic time dependence (T (t) = eiωt, with real ω) is no longer

allowed. A complex exponential appears instead, with a complex parameter whose values

are given by the usual, homogeneous boundary conditions:

σijnj = 0 at r = R. (4.3)

4.2 Kelvin–Voigt model

4.2.1 Constitutive relation and construction of solutions

As discussed in chapter 2, the one–dimensional version of this model describes the

viscoelastic solid as an elastic spring and a dashpot in parallel, which furnishes the

desired dissipation effects (see also [16, 60]). For the case of a three–dimensional solid,

the constitutive equation relating strain and stress can be written as

σij = (λ+ λ′∂t) skkδij + 2 (µ+ µ′∂t) sij , (4.4)

where isotropy and homogeneity are assumed. The constants λ and µ are the usual

Lamé coefficients describing the purely elastic behaviour of the body, while the positive

coefficients λ′ and µ′ parametrize its viscous properties 2, which is proportional to the

rate of strain tensor, ∂tsij . Introducing the splitting (4.2) and the constitutive equation

(4.4) into the equations of motion (4.1), we obtain the following relationship:

ρT̈ (t)s(x) =
[

(λ+ µ)T (t) + (λ′ + µ′)Ṫ (t)
]

∇ (∇ · s(x)) +
[

µT (t) + µ′ Ṫ (t)
]

∇2s(x),

(4.5)

where a dot denotes differentation with respect of time. As was done in the case of

the elasticity equations of motion, we can now split the spatial part s(x) of the field of

displacements into its longitudinal and transverse components:

s = st + sl ∇ · st = ∇× sl = 0,

so that equation (4.5) can be written as

ρT̈ (t)(st + sl) =
[

(λ+ µ)T (t) + (λ′ + µ′)Ṫ (t)
]

∇ (∇ · sl) +
[

µT (t) + µ′ Ṫ (t)
]

∇2(st + sl),

2In fact, these coefficients are analogous to those appearing in hydrodynamics to describe the viscosity

of fluids: shear viscosity (µ′) and bulk viscosity (2µ′ + 3λ′).



82 Chapter 4. Quasi–normal modes of vibration for viscoelastic solids

whence, taking the rotational,

∇×
[

ρT̈ st − (µT + µ′ Ṫ )∇2st

]

= 0.

The vector between square brackets is thus divergence–free and irrotational, so that it

must vanish. We have therefore:

∇2st =

{

ρ T̈

µ T + µ′ Ṫ

}

st.

As the left hand side of the above equation does not depend on time, the term between

braces in the right hand side must equal a (complex) constant, say −K2, and thus,

∇2st + K2 st = 0 (4.6)

µT + µ′ Ṫ + K−2T̈ = 0 . (4.7)

An analogous procedure, after taking the divergence of the equations of motion (cf. x3.2),

gives us the corresponding formulæ for the longitudinal part:

∇2sl + Q2 sl = 0 (4.8)

(λ+ 2µ)T + (λ′ + 2µ′) Ṫ + Q−2T̈ = 0 , (4.9)

where Q2 stands for a complex separation constant. Due to the fact that T (t) must fulfil

both equation (4.7) and equation (4.9), the two constants K and Q are not independent.

Writing the solution to these equations as

T (t) = eγ t, (4.10)

with γ also a complex constant, we obtain immediately the values of Q and K as functions

of this unique parameter:

Q2 = −ργ2 [λ+ 2µ+ γ (λ′ + 2µ′)]
−1

K2 = −ργ2 [µ+ γ µ′]
−1
. (4.11)

The boundary conditions (4.3) will fix the allowed values for the parameter γ. We

have obtained a set of equations which is analogous to that for the elastic case: two

Helmholtz equations for the longitudinal and transverse parts of the displacement, with

the parameters Q and K playing the part of q and k, and the real frequency ω being

substituted by the complex quantity iγ. Thus, as regards the solution of equations (4.8)
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and (4.6), we can simply take the expressions derived in x3.2 and substitute the couple

of constants (q, k) by their counterparts (K, Q), obtaining (cf. (3.13)):

s(x) =
Cl

Q sl(x) +
Ct

K st(x) + Ct′st′ ,

=
Cl

Q∇φ(x;Q) + i
Ct

K ∇× Lϕ(x;K) + iCt′Lϕ(x;K), (4.12)

where the scalar functions φ and ϕ satisfy corresponding Helmholtz equations:

∇2φ(x;Q) + Q2φ(x;Q) = 0 ∇2ϕ(x;K) + K2ϕ(x;K) = 0, (4.13)

4.2.2 Form of solutions and boundary conditions for the sphere

The explicit expressions for sl, st and st′ when spherical symmetry is assumed are

obtained by following exactly the same steps which were described in x3.3.1 and appendix

A.1.1. Therefore, we end up with explicit expressions analogous to equations (3.17),

(3.18) and (3.19), that is

sl(r, θ, φ) =
djl(Qr)
d r

Ylm n − jl(Qr)
r

in× LYlm . (4.14)

st(r, θ, φ) = −l(l+ 1)
jl(Kr)
r

Ylm n +

(

jl(Kr)
r

+
djl(Kr)
d r

)

in× LYlm . (4.15)

st′(r, θ, φ) = jl(Kr) iLYlm . (4.16)

The explicit form of the boundary conditions can also be obtained taking the corre-

sponding expressions for the elastic case (equations (3.23)), where, besides the substitu-

tion of k and q, the constants λ, µ must be replaced, respectively, by λ+γλ′ and µ+γµ′.

Thus, the vector form of equation (4.3) is, for this model (cf. (3.14)),

(λ+ γλ′) (∇ · s(x))n + 2(µ+ γµ′)n · ∇s(x) + 2(µ+ γµ′)n × (∇× s(x)) = 0 (4.17)

and the homogeneous linear system to be satisfied by the constants Cl, Ct, Ct′ appearing

in (4.12) is now








β4

(

QR, λ+γλ′

µ+γµ′

)

−l(l+ 1)K

Q
β1(KR) 0

−β1(QR) K

Q
β3(KR) 0

0 0 −K

Q
KRβ1(KR)

















Cl

Ct

Ct′









= 0, (4.18)

where the definition of the functions βi is that given in (3.25) for i = 1, 2, 3, and we have

redefined β4 introducing a second argument:

β4(z,A) ≡ β2(z) −
A

2
jl(z), (4.19)
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so that β4(z) = β4(z, λ/µ). Again, imposing compatibility of the above linear system

gives us two families of quasi-normal modes, which we shall term in the same fashion as

in the elastic case: toroidal and spheroidal quasi–normal modes of vibration.

4.2.3 Toroidal modes

These modes are obtained by solving the system (4.18) imposing

β1(KR) = 0 (4.20)

as the compatibility condition, so that Cl = Ct = 0. This is exactly the same equation as

the one satisfied by kT
nlR, the toroidal eigenvalues for the elastic solid, so that we already

have the toroidal spectrum of the Kelvin-Voigt solid, which we shall also label with three

indices:

KT
nl = kT

nl =

√

ρ

µ
ωT

nl, (4.21)

where ωT
nl denotes the angular eigenfrequency of the elastic mode. The above equa-

tion, combined with the second (4.11), gives us the allowed values for the parameter γ

appearing in the time–dependence of toroidal quasi–normal modes:

γT
nl = −(ωT

nl)
2 µ

′

2µ
+ iωT

nl

√

1 −
(

ωT
nlµ

′

2µ

)

. (4.22)

The real part of γ gives the damping factor associated with the quasi–normal mode at

hand, while the purely imaginary part will be the angular frequency of vibration. On

the other hand, the spatial part of toroidal modes for the Kelvin-Voigt solid, by virtue of

equation (4.21), is identical to that of the elastic solid (cf. equations (3.43) and (3.44)),

so that the internal friction, when modelled in this way, alters only the time–dependence

of the vibrations. Regarding this dependence, we shall be interested in the special case

of small internal damping, that is, in the approximation

µ′

µ
≈ λ′

µ
<<

1

ω
. (4.23)

When this approximation is assumed, we obtain from (4.22):

γ = iω − ω2 µ
′

2µ
+ o(µ′ω/µ), (4.24)

which shows that, when (4.23) holds, the angular frequency of vibration remains also

unaltered, and the only effect of viscosity is the introduction of a damping factor of the

form exp(−(ω2µ′/2µ)t).
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Summing up, let sT
KV (x, t) denote a Kelvin-Voigt, toroidal quasi–normal mode, and

sT
E(x, t) an elastic, toroidal normal mode. We have proved that, under requisite approx-

imations, they are related by:

sT
KV (x, t) = sT

E(x, t) e−wT
nlt/Qnl , Qnl =

2µ

µ′ωT
nl

, (4.25)

where, due to (4.23), the quality factor will satisfy Q >> 1, as is the case with the actual

metallic alloys of our concern here [28, 74, 14]. Thus, all the properties regarding the

spectrum and the spatial field of displacements associated with toroidal quasi–normal

modes of a Kelvin–Voigt solid are the same as those of toroidal normal modes of an

elastic solid (cf. x3.3.3).

4.2.4 Spheroidal modes

A second way to make the linear system (4.18) compatible is to impose the condition

β4

(

QR, λ+ γλ′

µ+ γµ′

)

β3(KR) − l(l + 1)β1(QR)β1(KR) = 0. (4.26)

By virtue of equations (4.11), this relationship can be translated into a condition to be

fufilled by γ, and depending on the ratios λ/µ, λ′/λ and µ′/µ, as well as on the multipolar

index l. In this case, as we are not dealing with an eigenvalue problem of a selfadjoint

operator, complex solutions to equation (4.26) are allowed (and, indeed, expected). An

exact solution of that equation would imply a separation of its real and imaginary parts,

followed by numerical calculations which would determine the angular frequency and

quality factor of the quasi–normal mode at hand. But, as we are interested in materials

with a high decay time, we shall try a perturbative solution of equation (4.26), using

ǫ ≡ µ′ω

µ
(4.27)

as the perturbative parameter (that is, assuming that the approximation (4.23) holds).

Here, ω stands for any spheroidal eigenfrequency satisfying (3.27). Obviously, the unper-

turbed solution, i.e., that corresponding to ǫ = 0, is the elastic solid’s solution already

discussed in previous chapters. Thus, we shall introduce the perturbative expansion

γ = γo + γ1ǫ+O(ǫ2), γo = −iω, (4.28)

Using equations (4.11) and (4.28), we obtain perturbative expansions for the parameters

K and Q that can be written as

K = ko + k1ǫ+O(ǫ2), Q = qo + q1ǫ+O(ǫ2), (4.29)
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where

ko = k = ω
√

ρ
µ , k1 = i

√

ρ
µ

(

γ1 + ω
2

)

qo = q = ω
√

ρ
λ+2µ q1 = i

√

ρ
λ+2µ

(

γ1 + h′+2
h+2

ω
2

)

(4.30)

In the above equations, k and q are the parameters appearing in the elastic sphere’s case,

and we have introduced the non–dimensional quotients

h ≡ λ

µ
h′ ≡ λ′

µ′
, (4.31)

which are both zero–order quantities. We can now perform the perturbative expansion

of the eigenvalue equation. In order to ease the resulting expressions, let us introduce

the following notation:

β4

(

QR, λ+ γλ′

µ+ γµ′

)

= β4(qR, h) +

[

β′
4(qR, λ/µ)q1R− i

2
(h− h′) jl(qR)

]

ǫ

≡ Ao + [A1q1R− iA′
1] ǫ, (4.32)

l(l+ 1)β1(KR) = l(l+ 1)β1(kR) + l(l+ 1)β′
1(kR)k1Rǫ

≡ Bo +B1k1Rǫ, (4.33)

β1(QR) = β1(qR) + β′
1(qR)q1R ǫ ≡ Co + C1q1R ǫ, (4.34)

β3(KR) = β3(kR) + β′
3(kR)k1R ǫ ≡ Do +D1k1Rǫ, (4.35)

where a prime over a β–function denotes differentiation with respect to its first argument.

We note that the uppercase constants introduced above are real. With this notation, the

zeroth order form of equation (4.26) is

AoDo − CoBo = 0,

which is simply the condition of ω being a spheroidal eigenvalue of the purely elastic

case. On the other hand, the first order expansion of (4.26) yields

(AoD1 − CoB1)k1R+ (A1Do − C1Bo)q1R = iA′
1Do,

whence, using the form of k1 and q1, the value of γ1 ensues. It can be written as

γ1 = −ω
2
f(kR, h, h′), (4.36)
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where the dimensionless function f has the form 3

f(kR, h, h′) = −2A′
1Do(kR)−1 −AoD1 + CoB1 − (A1Do − C1Bo) (h′ + 2)(h+ 2)−3/2

AoD1 − CoB1 + (A1Do − C1Bo)(h+ 2)−1/2
.

(4.40)

We note that the first order correction obtained for γ is real. Therefore, to this order

of approximation, the frequencies of vibration remain unaltered, and are the same as

those obtained for the elastic solid. Moreover, k1 and q1 happen to be purely imaginary.

Therefore, the modulus of the radial functions appearing in the spatial part of spheroidal

quasi–normal modes of vibration will also be the same as those of the elastic solid, for

the correction to k and q will just introduce, to first order, a complex phase.

Summing up, we have shown that while the spheroidal normal modes of vibration of

an elastic solid are given by an expression of the form (3.29), i.e.

sP
E(x, t) = eiωP

nlt(Anl(r)Ylm n −Bnl(r) in × LYlm ) (4.41)

the spheroidal quasi–normal modes of vibration of a Kelvin–Voigt solid having the same

Lamé coefficients sP
KV are obtained from the normal modes of the elastic solid according

to the following equation

sP
KV (x, t) = eiωP

nlt−ωP
nlt/Qnl

(

eiχ
1
(r)Anl(r)Ylm n − eiχ

2
(r)Bnl(r) in × LYlm

)

(4.42)

the qualitity factor being given by

Qnl =
2µ

µ′ωP
nl

1

f
, (4.43)

where we should remember that f is a function of the mode and the coefficients charac-

terizing the body (cf. (4.40)). The real phases χ1,2(r) can be computed from equations

3The case in which f takes its simplest form is that of monopolar modes. We know, from the

calculations of the previous chapter, that when l = 0 equation (4.26) is no longer valid, and must be

replaced by

β4

(

QR,
λ + γλ′

µ + γµ′

)

= 0. (4.37)

Using now the expansion (4.32) and the fact that Ao = 0 for the uperturbed monopolar eigenfrequencies,

we obtain for the first order correction to Q,

q1 = iA′
1A−1

1 , (4.38)

and therefore, using the notation of equation (4.36) and the relation (4.30):

f(qR, h, h′) =
h′ + 2

h + 2
−

2 A′
1

qR A1
. (4.39)
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(4.14), (4.15) and (4.30). Nevertheless, the explicit (and cumbersome) form of these

phases is largely irrelevant and whe shall not write it down here (it can be found in ap-

pendix B.1). They merely introduce a position–dependent shift in the phase of vibrations

which is of order ǫ, and, therefore, they are not likely to give rise to measurable effects.

More interesting, and physically relevant, is the behaviour of the function f giving the

precise dependence of the quality factor on frequency . First of all, it is easily seen that,

for the special case h = h′, f is equal to 1, and, thus, the quality factor goes as ω−1, as

was the case with toroidal modes. But, when the aforementioned equality does not hold,

numerical calculations are needed. Figure 4.1 shows the value of this function for h = 2

(elastic Poisson ratio 1/3) and some values of h′. We have represented the first twenty

eigenvalues of the spheroidal spectrum. It is evident from equation (4.40) that fixing h

and kR leaves us with a linear function of h′, whose slope varies from root to root. In

figure 4.2 we have plotted the quality factor for the same set of eigenvalues.

4.3 Maxwell model

4.3.1 Constitutive relation and construction of solutions

We saw in chapter 2 that the Maxwell model, when a one–dimensional case is consid-

ered, amounts to modelling the viscoelastic solid as a spring (elastic behaviour) in series

with a dashpot (viscous behaviour). When a three–dimensional body is at hand, and it

is also isotropic and homogenous, the constitutive relation can be written as

∂tσij + ασkkδij + β σij . = ∂t

(

λ skk δij + 2µ sij

)

(4.44)

Here, the constants λ and µ are again the Lamé coefficients describing the elastic be-

haviour of the body, while the coefficients α and β parametrize the effects due to internal

friction. To construct separable solutions, we must factorize both stress and strain 4:

σij(x, t) = eγ t σij(x), si(x, t) = eγ t si(x), (4.45)

On the other hand, the constitutive equation is written, after separation of variables and

contraction of its free indices, as

(γ + 3α+ β)σjj(x) = γ (2µ+ 3λ) sjj(x)

4Due to the equations of motion (4.1), if s is assumed to be separable in the fashion (4.2), the strain

tensor must also be separable, and, due to the constitutive equation, it is easily seen that the only

possible time dependence is of the form exp(γ t).
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Figure 4.1. Value of the dimensionless function f(h, h′, kR) for h = 2 (Poisson

ratio σ = 1/3) and the first few modes of the sphere’s spectrum.

and, hence, we have the following relation between the spatial parts of stress and strain:

(

1 +
β

γ

)

σij(x) =

(

λ− α
2µ+ 3λ

γ + 3α+ β

)

skk(x)δij + 2µ sij(x). (4.46)

As in the preceeding model, we shall be mainly interested in the case of small internal

friction, so that we can assume

β

| γ | ≈
α

| γ | << 1, (4.47)

yielding the following constitutive relation

σij(x) = λ

(

1 − δ

γ

)

skk(x)δij + 2µ

(

1 − β

γ

)

sij(x), (4.48)
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Figure 4.2. Quality factor Qnl (in units of µR/µ′vt) for some values of the pa-

rameter h′ and the first modes of the spheroidal spectrum. The viscoelastic solid

is described by a Kelvin–Voight model with h = 2.

where we have introduced a new constant, δ, given by

δ =
2µ+ 3λ

λ
α+ β, (4.49)

so that we can take, as the parameters characterizing the Maxwell solid, the set consisting

of the Lamé coefficients λ, µ, and the parameters β, δ which describe internal friction.

Let us compare equation (4.48) with that of the Kelvin–Voigt model (cf. (4.4)), once

the separation of variables has been performed:

σij(x) = (λ + γλ′) skk(x)δij + 2(µ+ γµ′) sij(x). (4.50)

Comparing equations (4.48) and (4.50), we observe that the resolution of the Maxwell

model can be carried out, as regards the spatial part of s, following the method used
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in the previous section for the Kelvin–Voigt model. In fact, we can directly take the

expressions there derived, and make the substitutions

µ′ −→ −µβ γ−2, λ′ −→ −λ δ γ−2, (4.51)

which transform equation (4.50) into (4.48). Thus, the form of the solutions and bound-

ary conditions for a Maxwell viscoelastic sphere is that given in x4.2.2 with constants K
and Q given now by the following functions of the parameter γ:

Q = i

√

ρ

λ+ 2µ

[

γ +
1

h+ 2

(

h

2
δ + β

)]

K = i

√

ρ

µ

(

γ +
β

2

)

, (4.52)

where the approximation (4.47) has been taken into account, and h = λ/µ.

Thus, the two families of quasi–normal modes of vibration are also present in this

model, and we describe them in the following subsections.

4.3.2 Toroidal modes

As discussed in the previous subsection, the allowed values for γ are again those

making the linear system (4.18) compatible. The first possibility are purely tangential

(Ct = Cl = 0) vibrations satisfying the well–known condition

β1(KR) = 0 =⇒ K =

√

ρ

µ
ωT

nl,

ωT
nl being a toroidal eigenfrequency of the elastic sphere. Using the relationship between

γ and K for a Maxwell solid given by equation (4.52), we obtain the admitted values γT
nl

as

γT
nl = −iωT

nl −
β

2
. (4.53)

Again, toroidal quasi–normal modes have two fundamental properties. They have the

same set of eigenfrequencies as the elastic sphere (to first order in the parameters describ-

ing internal friction, β in this case), and also exactly the same spatial part (for all values

of the viscosity parameters). The only difference between Kelvin–Voigt and Maxwell

solids, regarding toroidal modes, appears in the dependence of the quality factor on ω:

as equation (4.53) shows, the quality factor of a linear Maxwell solid increases linearly

with frequency. We can express all these properties by means of the following formulæ :

sT
M (x, t) = sT

E(x, t) e−ωT
nlt/Qnl Qnl =

2ωT
nl

β
, (4.54)
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relating Maxwell quasi–normal modes of vibration, sT
M (x, t), with elastic normal modes,

sT
E(x, t), for the toroidal family.

4.3.3 Spheroidal modes

In order to handle the spheroidal family, we resort again to the perturbative expan-

sions already used in the Kelvin-Voigt case, and, in fact, when dealing with the toroidal

family. The Maxwell model reduces trivially to the perfect elastic case when β = δ = 0,

and hence we can take as the perturbative parameter

ǫ =
β

ω
, (4.55)

where ω is the elastic eigenfrequency to which γ approachs when both β and δ tend to

zero. Perturbative expansions in the fashion of x4.2.4 can be now introduced

γ = −iω + γ1ǫ, K = k + k1ǫ, Q = q + q1ǫ,

where the first order corrections k1 and q1 are given by equations (4.52) as functions of

γ1:

k1 = i

√

ρ

µ

(

γ1 +
ω

2

)

q1 = i

√

ρ

λ+ 2µ

(

γ1 +
h′ + 2

h+ 2

ω

2

)

(4.56)

where, now, the zeroth order quotient h′ is given by

h′ = h
α

β
. (4.57)

With this definition, together with that of the perturbative parameter, the expressions at

hand are formally identical to those of the Kelvin–Voigt model and, therefore, the solu-

tions to the Maxwell model share all the properties with their Kelvin–Voigt counterpart

but the dependence of the quality factor on frequency: the product γ1ǫ, which gives the

exponential decaying, is now independent of ω.

Summing up, spheroidal quasi–normal modes of the Maxwell solid, sP
M (x, t), are

related to spheroidal normal modes of perfectly elastic solids by the equations

sP
M (x, t) = eiωP

nlt−ωP
nlt/Qnl

(

eiχ
1
(r)Anl(r)Ylm n − eiχ

2
(r)Bnl(r) in × LYlm

)

(4.58)

the qualitity factor being now given by

Qnl =
2ωP

nl

β

1

f
, (4.59)
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Figure 4.3. Quality factor Qnl (in units of vt/βR) for some values of the parameter

h′ and the first modes of the spheroidal spectrum. The viscoelastic solid is described

by a Maxwell model with h = 2.

where the function f(kR, h, h′) is given by (4.40). In figure (4.3) we plot the quality

factor of the first twenty eigenfrequencies of a Maxwell solid. We note that this model

presents a stronger variability of Qnl with frequency.

As the calculations so far show, the only difference between the behaviour of Maxwell

and Kelvin-Voigt viscoelastic solids, when free oscillations are considered and provided

the internal friction can be considered small, appears in the dependence ofQ on frequency.

We should note that, under other conditions (e.g. static load), both models show a greater

divergence in their physical behaviour[55].
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4.4 Standard Linear Model

4.4.1 Reduction of the SLM

The Standard Linear Model (SLM) for a viscoelastic solid results from the three–

dimensional generalization of the mechanical model consisting of a linear, one–dimen-

sional spring in series with a Kelvin–Voigt one–dimensional element (cf. x2.2.2). The

corresponding constitutive equation takes the form:

σij + ∂t (ασkkδij + 2β σij) = (λ + α′∂t) skkδij + 2(µ+ β′∂t) sij , (4.60)

where the effects of internal friction are described in this case with the aid of four pa-

rameters, namely, the constants α, β, α′ and β′. When looking for separable solutions,

the equations of motion and the above relation force a time dependence of the form eγ t

for both stress and strain. When such a dependence is introduced in equation (4.60), we

obtain the following relation between the spatial parts of the stress and strain tensors:

(1 + 2γβ)σij(x) =

[

λ+ α′γ − αγ
3λ+ 2µ+ γ(3α′ + 2β)′

1 + γ(3α+ 2β)

]

skk(x)δij + 2(µ+ β′γ)sij(x).

The case of small internal friction is treated by first order approximation in the quantities

parametrizing viscous processes, i.e.

α, β, α′, β′ << 1/ | γ | (4.61)

When such approximation is made, the above equation reduces to

σij(x) = (λ+ λ′γ)skk(x)δij + 2(µ+ µ′γ)sij(x), (4.62)

where we have introduced two new constants given by

µ′ = β′ − 2βµ, λ′ = α′ − 2λβ − (3λ+ 2µ)α. (4.63)

Therefore, when equation (4.61) holds, the SLM reduces to a Kelvin–Voigt one; that

is, for small internal friction, both models have the same set of quasi–normal modes of

vibration, which are characterized by the constants λ, µ, λ′ and µ′, the latter being given,

for the Standard Linear solid, by equations (4.63).
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4.5 Generalized mechanical models

4.5.1 Constitutive equation

The models analysed so far are the simplest ones obtained by three-dimensional gen-

eralizations of mechanical viscoelastic models composed of linear springs and dashpots.

They give rise to differential constitutive relations, with time derivatives up to the first

order. Considering more involved networks of springs and dashpots yields differential

relations involving higher order time derivatives of strain and stress (see, e.g., [16, 60]).

Thus, quite independently of any reference to the underlying mechanical model, we can

consider general differential relations between stress and strain including any number

of time derivatives. To ease the formulation of such differential constitutive equations

for the case of isotropic and homogenous bodies, we shall introduce the trace–free parts

of the strain and stress tensors, s′ij , σ
′
ij (usually termed deviatoric components in the

literature on viscoelasticy [16, 60, 51]),and their traces, s and σ (dilational components),

defined as

s′ij = sij −
1

3
sδij , s = skk (4.64)

σ′
ij = sij −

1

3
σδij , σ = σkk. (4.65)

In terms of the above quantities, the linear Hooke law for an elastic solid takes the form

σ = (3λ+ 2µ)s σ′
ij = 2µ s′ij , (4.66)

while the constitutuive equation of a SLM is written as

[1+(3α+2β)∂t]σ = [3λ+2µ+(3α′+2β′)∂t] s, (1+2β∂t)σ
′
ij = (2µ+2β′∂t) s

′
ij . (4.67)

The above equation can be now generalized to include higher order time derivatives. We

can consider thus viscoelastic models whose constitutive equation is given by

R(∂t)σ = S(∂t)s R′(∂t)σ
′
ij = S′(∂t)s

′
ij , (4.68)

where we have introduced the polynomials

R(x) =

N
∑

l=0

rlx
l, R′(x) =

N
∑

l=0

r′lx
l, S(x) =

N
∑

l=0

slx
l, S′(x) =

N
∑

l=0

s′lx
l, (4.69)

so that a general differential model is given for each set of 4N real constants rl, r
′
l, sl,

s′l characterizing the solid at hand (some constants may be zero, the polynomials being
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then of different order, and N indicating the highest one). It is easily seen that the three

preceeding models are special cases of this general class. In the following subsection we

shall describe a well–known general procedure, based on Fourier transform techniques, to

solve a general differential model, by means of the so–called Correspondence Principle,

and will just sketch its application to the solid sphere.

4.5.2 The Correspondence Principle

Let σ̃ij(x,Ω) and s̃ij(x,Ω) be the Fourier transforms of the stress and strain tensors,

and s̃i(x,Ω) that of the displacement vector field:

σ̃ij(x,Ω) ≡
∫∞

−∞
σij(x, t)e

iΩtdt s̃i(x,Ω) ≡
∫∞

−∞
si(x, t)e

iΩtdt (4.70)

s̃ij(x,Ω) ≡
∫∞

−∞
sij(x, t)e

iΩtdt = s̃(i,j)(x,Ω). (4.71)

In terms of these Fourier transforms, the constitutive equations (4.68) read:

σ̃ =
R(iΩ)

S(iΩ)
s̃ σ̃′

ij =
R′(iΩ)

S′(iΩ)
s̃ij , (4.72)

while the equations of motion are

−Ω2s̃ =
1

3

(

R(iΩ)

S(iΩ)
− R′(iΩ)

S′(iΩ)

)

∇(∇ · s̃) +
R′(iΩ)

2S′(iΩ)
∇2s̃. (4.73)

Comparing the above equations with the corresponding ones for normal modes of vibra-

tion of elastic solids (see (3.3)), and the constitutive relation (4.72) with (4.66), we note

that the problem of finding solutions to the equation of motion of a general viscoelastic

differential model reduces to that of finding the normal modes of vibration of an elastic

solid having complex Lamé coefficients, given by

λ̃(Ω) =
1

3

(

R(iΩ)

S(iΩ)
− R′(iΩ)

S′(iΩ)

)

µ̃(Ω) =
1

2

R′(iΩ)

S′(iΩ)
, (4.74)

where the allowed values of Ω are obtained as the solutions to the elastic solid’s eigenfre-

quency equation when the above complex coefficients are used instead of the real, constant

Lamé coefficients λ, µ (thus, in general, Ω will take complex values giving rise to damped

oscillations). After solving for Ω, the spatial part of the solutions is obtained from that

of the normal modes by simply substituting the old, real–valued constants ω, λ and µ by

the new complex values Ω, λ̃ and µ̃. This method for solving the viscoelasticity equations

is known in the literature on the subject [16, 60, 82] as the Correspondence Principle,

and, as a matter of fact, our previous derivations of the form of quasi–normal modes for
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Kelvin–Voigt, Maxwell and SL models can be seen as special cases of its application. It

can be applied to any boundary value problem whose elastic counterpart is solvable. The

case of small internal friction (that is, first order approximation in the coefficients of the

polynomials given in (4.69)) has been treated by Graffi [82, 58] for one–dimensional wave

propagation. As shown in the previous sections, the three–dimensional, spherical case is

also solvable. In fact, the toroidal modes are straightforward obtained from their elastic

counterparts due to the simple form of their eigenvalue equation, while the spheroidal

ones demand more complex algebra, which becomes more cumbersome as the order N

of the model increases. Therefore, we shall give the general solution to the toroidal case

for any differential viscoelastic model. This solution will give us the dependence of Q on

frequency, which will also be the approximated dependence for spheroidal modes.

4.5.3 Toroidal modes

As discussed above, the boundary equation for toroidal modes of a general viscoelastic

model is obtained from the eigenvalue equation of the elastic model

β1(kR) = 0 k =

√

ρ

µ
ω, (4.75)

upon substitution of µ by µ̃, yielding

β1(KR) = 0 K = Ω

√

2ρS′(iΩ)

R′(iΩ)
. (4.76)

We know that the only solutions to the eigenvalue equation (4.75) are the real eigenfre-

quencies of the elastic sphere, ωT
nl, and therefore the allowed values for Ω are given by

the relation
√

2µS′(iΩ)

R′(iΩ)
Ω = ωT

nl. (4.77)

Let us write the polynomials S′ and R′ as

S′(x) = 1 + ǫ

N
∑

l=1

s′lx
l, R′(x) = 2µ

(

1 + ǫ

N
∑

l=1

r′lx
l

)

, (4.78)

so that the small internal friction approximation shall be represented by the inequality

ǫ << 1 (4.79)

and the quantities r′lω
l and s′lω

l are zero–order in ǫ and dimensionless, ω being a toroidal

eigenvalue of the elastic case. We shall introduce also an expansion for Ω in the small
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parameter ǫ, whose zero order term will correspond to a toroidal eigenfrequency ω of the

elastic solid:

Ω = ω + ǫΩ1. (4.80)

Under the above approximations, we have

2S′(iΩ)

µR′(iΩ)
= 1 + 2iǫ

N
∑

l=0

tlω
l, tl ≡ il−1(s′l − r′l)/2, (4.81)

and the value of Ω1 follows when introducing the above expansion into equation (4.77),

yielding

Ω1 =

N
∑

l=1

tlω
l+1. (4.82)

In terms of Ω1, the quality factor reads

Q = −ω
ǫ

1

Im[Ω1]
, (4.83)

where Im[·] denotes the imaginary part of its argument. Thus, we observe that, as

regards toroidal modes, using a general differential model gives us a polynomial in ω

for 1/Q, with no independent term (so that constant Q is not allowed by this models)

and containing only odd powers of the unperturbed frequency ω. In general, whenever

tl 6= 0 for any l even, the real part of Ω1 will not vanish and the angular frequency of

the periodic component of the quasi–normal modes shall undergo first order corrections.

Hence, in order to preserve the elastic spectrum to first order, our model must satisfy

the conditions

tl = 0 (l even). (4.84)

Provided the preceeding equation holds, the corrections to K will be purely imaginary

and, thus, the modulus of the spatial part of the modes will remain unaltered, the only

effect of viscosity being the addition of a point–dependent phase in the fashion of equation

(4.42) 5.

The calculation for the spheroidal quasi–normal modes could be performed along the

same lines, but, as we have seen in the simplest models, the algebra becomes increasingly

cumbersome as the order of the model grows. We shall not go into such calculations

here.

5This correction will appear provided that N ≥ 2 and, thus, it was absent in the toroidal families of

the previously discussed models.



Chapter 5

Sensitivity of spherical detectors

5.1 Introduction

The previous chapters have been devoted to the investigation of the physical proper-

ties of elastic and viscoleastic solids when no external forces act upon them, this study

being the basis for a detailed analysis of the way such bodies behave under the influence

of impinging gravitational waves. We undertake that analysis in the present chapter. As

we have shown, the interaction between gravitational radiation and rigid solids takes the

form of a tidal driving force entering the equations of motion. Thus, we first address

the problem of finding the field of displacements induced in a body by a gravitational

wave, and of which are the distinctive features of these deformations. Afterwards, we

proceed to an investigation of the efficiency of these resonant detectors, a key point due

to the weakness of the expected signals. The sensitivity of a viscoelastic solid as as

gravitational wave antenna can be quantitatively described by means of the concept of

absorption cross–section, a familiar one in many branches of physics, ranging from scat-

tering phenomena in classical electrodynamics [67] to purely quantum phenomena such

as neutron absorption [18]. In the present context, the absorption cross–section σabs is

defined as the fraction of incoming gravitational energy per unit area absorbed by the

detector [127, 93, 105]. More precisely, when considering a finite duration driving force,

if dE/dS denotes the total energy per unit area impinging on the detector, we shall

compute its absorption cross–section by means of the ratio

σabs =
Eosc

dE/dS
, (5.1)
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where Eosc stands for the energy of the oscillations induced by the incoming wave. On

the other hand, if a continuous driving force sweeps the detector carrying an energy per

unit area and per unit time Φ and causes the resonant body to vibrate with an average

mechanical power < P >, the absorption cross–section will be defined as the ratio

σabs =
< P >

Φ
. (5.2)

We shall use the concept of cross–section as a useful criterion for evaluating and com-

paring the suitability of differently shaped bodies to detect gravitational waves. The

computation of σabs for spherical bodies is addressed in section 5.3, where we present

a rederivation of the sphere’s sensitivity parameters within the context of the theory of

viscoelastic bodies dealt with in the preceeding chapters. Our approach is alternative to

previous derivations, based upon analogies [105], analysis of the scattered wave at infinity

[127] or introduction of the dissipation effects parametrically into the equations of motion

[93, 119, 88, 91]. The method presented has been previously applied to one–dimensional

oscillators [122, 123, 93], and to perfectly elastic bodies [76]. From our point of view, it

offers a sound theoretical basis for further research on the perfomance of resonant an-

tennæ. In the last two sections of this chapter, we will take the first steps in this direction,

and analyse some issues on the solid and hollow sphere as gravitational wave detectors.

There we shall often refer to cylindrical bars for comparison. Although spherical shape

was soon recognized as a better choice for a resonant detector’s geometry, and has been

the object of theoretical attention since the early seventies [48, 5, 119, 69, 76, 27], cylin-

drical bars are the only resonant detectors actually operative. Therefore, a brief review

of their main characteristics is previously given in x5.4.

5.2 Solution to the equations of motion

The aim of this section is to solve the equations of motion governing the interaction of

a Kelvin–Voigt solid with a linear gravitational wave. These equations have been derived

in chapter 2 and solved for the case of free oscillations in chapter 4. In the calculations

presented there, we have seen that solutions for the viscoelastic solid can be constructed

relying on the known solutions of the perfectly elastic solid. Now, we shall show that

this is also the case when a driving force comes into play, for we will solve the Kelvin–

Voigt equations of motion introducing again a perturbative expansion whose zeroth order

term corresponds to an elastic solid driven by the same external force. Thus, we begin,

after introducing some useful notation, reviewing the general solution to the equations
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of motion of an elastic solid in the presence of a driving force [76], while the solution to

the viscoelastic problem is derived in x5.2.2.

5.2.1 Elastic solid

As we have seen, when a force per unit volume f (x, t) acts on an elastic solid, it

undergoes deformations described by a field of displacements s(x, t) which is a solution

of the set of partial differential equations (3.1). Throughout this chapter, we shall perform

calculations in the frequency domain, i.e., we shall work with the Fourier transforms of

the quantities involved rather than with its time–dependent counterparts. Thus, denoting

by F (x, ω) and S(x, ω) the Fourier transforms of f(x, t) and s(x, t)1, the equations of

motion can be written as

ρω2S + (λ+ µ)∇ (∇ · S) + µ∇2S = −F , (5.4)

which must be supplemented by requisite boundary conditions. We shall be interested

in the case of no tractions on the body’s surface, which gives us the following conditions

λ(∇ · S)n + 2µn · ∇S + n × (∇× S) = 0, (5.5)

to be satisfied on the solid’s surface for any value of ω. Thus, the spatial parts of normal

modes of vibration discussed in chapter 3 are the solutions of the homogenous counter-

parts of the above equations. In order to take advantage of the eigenvalue expansions of

Green’s functions associated to partial differential equations, let us reformulate our prob-

lem in a notation which makes explicit that we are dealing with an eigenvalue problem

in a Hilbert space. We shall use the compact notation introduced in chapter 3.

Regarding S(x, ω) as a one–parameter family of vector fields over V , we can rewrite

equations (5.4) and (5.5) describing the driven oscillations of an elastic solid as a linear

problem over Hh, namely

µLS + ρω2S = −F , S ∈ Hh. (5.6)

where L and T are defined by equations (3.85) and (3.86), and are related by equation

(3.87). We also recall that the eigenvectors of L are the normal modes of vibration of the

1Uppercase letters will denote, unless stated otherwise, the Fourier transform of their lowercase

counterparts, according to the well–known formulæ

A(ω) ≡
∫

∞

−∞

a(t)e−iωtdt a(t) =
1

2π

∫

∞

−∞

A(ω)eiωtdω. (5.3)
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free solid, cf. (3.89). The above non–homogeneous equation can be immediately solved

with the aid of the Green’s operator G(x,x′, ω), which is defined [95] to be the solution

to

LG +
ρω2

µ
G = −I

1

ρ
δ(3)(x − x′), (5.7)

satisfying homogeneous boundary conditions on S:

TG|S = 0. (5.8)

Applying both sides of equation (5.7) to S and substracting the resulting equality from

G times equation (5.6), we have, after integration over V ,

S(x, ω) =
1

µ

∫

V

ρdx′
G(x,x′, ω)F (x′, ω). (5.9)

Combining the above integral representation, with the expansion (3.94) of G in terms

of normal modes of vibration sN (x) we finally obtain an expression for S(x, ω) as a

superposition of normal modes:

S(x, ω) =
∑

N

FN (ω)

ω2
N − ω2

sN(x), FN (ω) ≡ 1

M
(sN ,F ). (5.10)

The above equation gives the general solution to the problem of a driven elastic solid of

any shape and for any driving force. Using the convolution theorem for Fourier transforms

[30], the form of s(x, t) is easily computed from the fact that ωN(ω2
N−ω2)−1 is the Fourier

transform of Θ(t) sinωN t, where Θ(t) stands for the Heaviside’s step function. Thus, the

solution in the time domain is written as

s(x, t) =
∑

N

fN(t)

ωN
sN(x), fN (t) ≡ 1

M

∫ t

−∞

(sN ,f(t′)) sinωN(t− t′) dt′, (5.11)

which is the expression appearing in [76] for the case of a separable force. We shall make

use of these solutions and the formalism introduced to find the solution to the equations

of motion of a Kelvin–Voigt solid in the following subsection.

5.2.2 Kelvin–Voigt solid

In order to translate the equations of motion of a Kelvin–Voigt solid into the oper-

ational formalism used in the previous subsection, we shall introduce two more linear

operators, L’ and T’, defined as

(L′)ij ≡ (1 + h′)∂i∂j + δij∂k∂k, (5.12)
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(T′)ij ≡ h′ni∂j + 2δijnk∂k + ǫiklǫlmjnk∂m, (5.13)

where h′ denotes the ratio between the constants characterizing the viscous properties of

the solid, i.e., λ′ and µ′ (cf. chapter 4). With this notation, the equations of motion for

the field of displacements s(x, t) that a viscoelastic, Kelvin–Voigt solid undergoes under

the action of a driving force per unit mass f(x, t) have the form

ρ
∂2s

∂ t2
− µLs− µ′

L
′ ∂s

∂ t
= f , (5.14)

with boundary conditions

µTs + µ′
T
′ ∂s

∂ t

∣

∣

∣

∣

S

= 0. (5.15)

In the frequency domain, the above equations translate into

LS + iαL
′S +

ρω2

µ
S = −F

µ
, (T + iαT

′)S|S = 0, (5.16)

where we have introduced the dimensionless, ω-dependent parameter

α ≡ µ′ω

µ
. (5.17)

Before discussing the general solution to equations (5.16), we consider the particularly

simple case h′ = h. When this equality holds the viscoelastic problem is reduced to an

elastic–like one:

(1 + iα)LS +
ρω2

µ
S = −F

µ
, S ∈ Hh, (5.18)

which is immediately solved following the procedure detailed in the previous subsection,

yielding

S(x, ω) =
∑

N

FN (ω)

(1 + iα)ω2
N − ω2

sN (x), (h = h′), (5.19)

where the coefficients FN (ω) are defined in (5.10). When the spectrum of the driving

force F (ω) happens to be heavily peaked around a given eigenfrequency ωK , being zero

outside a neighbourhood of ±ωK , the above equation can be approximated by

S(x, ω) =
1

(1 + iα)ω2
K − ω2

∑

m

Fm(ω)sm(x), (5.20)

where the index m ranges over the eigenvectors having the same degenerate eigenfre-

quency ωK . Comparing the above solution to that of the purely elastic case (5.10), we

see that the effect of viscosity is to remove the real singularities of the spectrum S(x, ω)
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via the new term iαω2
K = iωω2

Kµ
′/µ. For small viscosity (ωKµ

′/µ << 1), this term

has an immediate physical meaning which can be shown notting that it this case we can

write

[ω2
K − ω2 + i(ω2

Kµ
′/µ)ω]−1 ≈ [ω2

K − ω2 + 2i(ω2
Kµ

′/2µ)ω + (ω2
Kµ

′/2µ)2]−1.

Now, the right hand member of the above equation is the Fourier transform of

Θ(t)ω−1
K exp{−(ω2

Kµ
′/2µ)t} sin ωKt,

and the convolution theorem gives us the expression of S(x, ω) in the time domain as

s(x, t) =
∑

N

ω−1
N exp{−(ω2

Nµ
′/2µ)t}

∫ t

−∞

fN (t′) exp{t′ω2
Nµ

′/2µ} sin ωN (t− t′) dt′.

(5.21)

Therefore, the forced solution is damped at each frequency with a quality factor QK =

2µ/ωKµ
′, which is the same as the quality factor of free damped oscillations found in

chapter 4.

Returning to the general case h′ 6= h, we shall look for a solution to equations (5.16)

as a power series expansion in α, i.e., having the form

S(x, ω) =

∞
∑

n=0

S(n)(x, ω)αn. (5.22)

Obviously, the zeroth order term of the above expansion is the solution corresponding to

an elastic solid under the same driving force, given by equation (5.10):

S(0)(x, ω) =
∑

N

S
(0)
N sN (x), S

(0)
N =

FN (ω)

ω2
N − ω2

. (5.23)

As regards the contributions S(n) for n ≥ 1, introducing the expansion (5.22) into the

equations of motion and gathering together the terms of the same order in α, we obtain

the following iterative set of differential equations to be satisfied for any n greater than

zero:

LS(n) +
ρω2

µ
S(n) = −iL′S(n−1), TS(n)|S = −iT′S(n−1)|S . (5.24)

Thus, each S(n) is the solution of a non–homogeneous elastic problem whose driving

terms are given by the previous order solution. This problem can be solved with the

aid of the Green’s operator introduced in the previous subsection once we have coped

with the inhomogeneous terms appearing in the boundary conditions. The details of this
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calculation, which is performed using standard techniques, are given in appendix (B.2).

There it is shown that, for a driving force with spectrum peaked around ωK , the solution

to equations (5.24) is given by

S(n)(x, ω) = −i
( −iω2

Kζ

ω2
K − ω2

)n
1

ω2
K − ω2

∑

m

Fm(ω)sm(x), (5.25)

where m is again a degeneracy index, and the new constant ζ has the value 2

ζ = 1 + (h′ − h)
µ

Mω2
K

∫

V

|∇ · sK |2 dV. (5.26)

Using (5.25) and the Taylor expansion (1 + ir)−1 =
∑

n(−ir)n, we can immediately

perfom the sumation of the series (5.22) giving the solution to the problem as

S(x, ω) =
∑

m

Fm(ω)

(1 + iζα)ω2
K − ω2

sm(x). (5.27)

Strictly speaking, the series from which this solution is obtained can be summed only

outside a small neighbourhood of ωK , because S(n)(x, ω) diverge as ω → ωK . Never-

theless, equation (5.27) has no singularities when ω = ωK , and it is a solution of the

equations of motion (5.16) for any value of ω, as can be shown by direct substitution. On

the other hand, when h = h′, ζ = ω2
K , so that solution (5.20) is seen to be a special case

of the above equation3. An argument analogous to that following equation (5.20) can be

applied to the general solution (5.27), leading to the following relationship between ζ and

the quality factor Qf
K associated with each frequency component of the forced solution

Qf
K =

2µ

µ′ωK

1

ζ
. (5.29)

On the other hand, we have shown in chapter 4 that the quality factor QK of a quasi–

normal mode of vibration of frequency ωK is given by (cf. x4.2.4)

QK =
2µ

µ′ωK

1

f
(5.30)

2Spherical symmetry is also assumed in this calculation. As easily seen from the explicit form of

eigenvectors in this case (cf. chapter 3), ζ does not depend on the degeneracy index m.
3For h 6= h′ use of the explicit expressions of sK(x) gives for a spheroidal mode of the solid with

K = {n, l, m}

ζ = 1 + (h′ − h)
µ

q
nl

ω2
nl

C(n, l)2

M

∫ qnlR

0

jl(ξ)ξ
2 dξ

= 1 + (h′ − h)
µ

q
nl

ω2
nl

C(n, l)2

M

1

2q
nl

R

{

(jl(z)/z − j′l(z))2 + [z2 − (l + 1/2)2]j2
l (z)
}

q
nl

R
,(5.28)

where the term between braces is computed at z = q
nl

R, and we have used the notation of chapter 3.

Analogous expressions for the hollow sphere can be found mutatis mutandis.
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where f has the somewhat cumbersome form given in (4.40), which by no means resembles

the one found for ζ. It is thus most remarkable that numerical computation of ζ according

to equation (5.28) shows it to take exactly the same values as f , i.e., we have

Qf
K = QK . (5.31)

Thus, we can rewrite the general solution (5.27) as

S(x, ω) =
∑

m

Fm(ω)

ω2
K − ω2 + 2i(ωK/QK)ω

sm(x). (5.32)

5.3 Calculation of the absorption cross–section

5.3.1 Absorbed power

Having now at our disposal the explicit form of the field of displacements undergone

by a Kelvin–Voigt solid under the action of an arbitrary driving force, we can proceed

to the calculation of expressions giving the absorption cross–section of such a solid. We

begin by computing in this subsection the power absorbed by the solid driven by a general

force, and spell it out for a separable, periodic one.

The external force f(x, t) acting on the body makes a work per unit time which is

given by the instantaneous power:

P (t) =

∫

V

∂s

∂ t
· f dV.

We shall not be interested in this instantaneous magnitude, but in the average power

absorbed by the solid as a result of the force’s action, which is given by

< P >≡ lim
T→∞

1

2T

∫ T

−T

P (t) dt = lim
T→∞

1

2T

∫ ∞

−∞

χT (t)P (t) dt, (5.33)

where we have introduced the function

χT (t) =

{

1 |t| < T

0 |t| > T
(5.34)

whose Fourier transform χ̃T (ω) is

χ̃T (ω) = 2
sinTω

ω
. (5.35)
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With the aid of Parseval’s and convolution theorems, equation (5.33) can be written as

a double integration over frequencies of the form

< P >= lim
T→∞

−i
4π2T

∫ ∞

−∞

dω

∫ ∞

−∞

dω′

∫

V

dV F (x, ω) · S∗(x, ω′)ω′ sinT (ω − ω′)

(ω − ω′)
,

Making use of the expression for S(x, ω) derived in the previous section (equation (5.32)),

the average power can thus be represented in terms of quantities referred only to the

driving force, namely

< P >= lim
T→∞

−iM
4π2T

∫ ∞

−∞

dω

∫ ∞

−∞

dω′ ω′ sinT (ω − ω′)

ω − ω′

∑

m

Fm(ω)F ∗
m(ω′)

ω2
K − ω2 − 2i(ωK/QK)ω

.

(5.36)

Let us consider a particular form of the driving force (plane wave) for which the above

frequency integrations can be performed, and which shall be of interest when dealing with

gravitational wave detectors.

By plane wave we mean a separable force having sinusoidal time–dependence, i.e.,

f(x, t) = f(x) sin Ωt, (5.37)

with Ω close to a given eigenfrequency ωK . Then we have

Fm(ω) = iπ fm [δ(ω + Ω) − δ(ω − Ω)], fm ≡ 1

M
(sm, f). (5.38)

The integrations appearing in (5.36) can be now immediately performed to yield

< P >pw= lim
T→∞

(

1 +
sin 2TΩ

2TΩ

)

Im

[

Ω

ω2
K − Ω2 − 2iΩωK/QK

]

M

2

∑

m

|fm|2,

and the limit is trivially computed, the average power absorbed by a detector under the

action of a plane wave being thus

< P >pw=
4ω2

KΩ2/Q2
K

(ω2
K − Ω2)

2
+ (2ΩωK/QK)

2

M

2

∑

m

|fm|2. (5.39)

This equation can be further simplified using the fact that we have assumed Ω very close

to ωK , i.e., |Ω − ωK | << ωK , so that

< P >pw=
M

4

ωK/QK

(ωK − Ω)2 + (ωK/QK)2

∑

m

|fm|2. (5.40)

So far, we have made no assumption regarding the dependence of f on the spatial

coordinates. But, as discussed in chapter 2, when considering the action of a gravitational
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wave impinging on a (visco)elastic body as observed in a normal reference, this form

happens to be of a very concrete type—in fact, it is a tidal force. The next subsection is

devoted to the calculation of the coefficients Fm and fm for such a x–dependence, which,

together with the expressions already derived for the power absorbed and those for the

incident energy flux carried by an incoming gravitational wave, will finally give us the

absorption cross–section of spherical resonant detectors.

5.3.2 Tidal driving force

Let us consider the specific form of the driving force arising from the interaction of

a viscoelastic solid with an impinging gravitational wave which is weak enough to allow

the use of the linear theory discussed in chapter 2. As shown there in full detail, this

interaction is described by a tidal field

fi(x, t) = ρ c2R0i0j(t)x
j , (5.41)

provided we are measuring in a normal frame. In the equation above, R0i0j stands

for the components of Riemann’s tensor at the center of the detector and are therefore

functions of time but not of position. These components are gauge invariant under first

order coordinate changes, as those relating normal coordinates with a reference system

in which the transverse, traceless gauge (TT–gauge) holds [47, 84]. We can thus compute

Riemann’s tensor in the TT–coordinate system although we are writing the equations of

motion in a normal system. They are given by the well–known expressions [121, 93]

R0i0j = − 1

2c2
∂2hTT

ij

∂ t2
, (5.42)

where hTT
ij denote the metric’s first order perturbation due to a linear gravitational wave,

as measured by a TT–observer. They have thus the following properties

hTT
ii = 0 hTT

ij,j = 0. (5.43)

Three–dimensional, symmetric and traceless matrices constitute a five–dimensional vec-

tor space. Thus, and arbitrary matrix Aij(t) with the aforementioned properties can

always be decomposed as a linear combination of the form

Aij(t) =

m=2
∑

m=−2

A(m)(t)E
(m)
ij
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with {E(m)
ij }m=−2,...,2 a properly chosen set of linearly independent traceless, symmetric

matrices. A very convenient choice of this basis is the following [76]:

E
(0)
ij =

√

5
16π









−1 0 0

0 −1 0

0 0 2









,

E
(±1)
ij =

√

15
32π









0 0 ∓1

0 0 −i
∓1 −i 0









, E
(±2)
ij =

√

15
32π









1 ±i 0

±i −1 0

0 0 0









. (5.44)

This basis is particularly suitable to bring out the spin features of the tidal driving term,

due to the following properties

E
(m)
ij ninj = Y2m(θ, φ) (5.45)

where n = x/|x| is the radial unit vector and Y2m denotes spherical harmonics. This is

also an orthogonal basis, i.e., the E matrices satisfy the orthogonality relationships

E
(m)∗
ij E

(m′)
ij =

15

8π
δmm′ , (5.46)

so that the driving force (5.41) can be represented as the linear combination

f(x, t) =

m=2
∑

m=−2

f (m)(x) g(m)(t), (5.47)

with

f
(m)
i (x) = ρE

(m)
ij xj , g(m)(t) =

8πc2

15
E

(m)∗
ij R0i0j(t). (5.48)

Using this representation, the calculation of the coefficients Fm introduced in the previous

subsection becomes straightforward. First of all, let us remember that, as shown in

chapter 2, the eigenvectors for a spherical body are labelled by four indices, namely

P or T (indicating spheroidal or toroidal family) and the triad {n, l,m}, m being the

degeneracy index. Thus, the eigenfrequencies can be labelled as ωS
nl, with S standing

for P or T , and the aformentioned coefficients should be labelled FS
nlm, with the triad

{S, n, l} playing the part of the generic index K previously used. Thus, we have

FS
nlm(ω) =

1

M

m′=2
∑

m′=−2

G(m′)(ω)(sS
nlm, f

(m′)), (5.49)
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where G(m)(ω) stands for the Fourier transform of g(m)(t). On the other hand, the

scalar products (sS
nlm, f

(m′)) are easily computed from the explicit expressions derived in

chapter 3 for the sphere’s eigenmodes in terms of vector spherical harmonics. Thus, for

toroidal modes,

(sT
nlm, f

(m′)) =

∫

V

Tnl(r)f
(m′) · ( iLYlm )∗ρ dV

=

∫

V

Tnl(r)ǫirsE
(m′)
ij xjxr∂sY

∗
lm(θ, φ) ρ dV.

The above integral can be cast into the following sum of three terms

(sT
nlm, f

(m′)) =

∫

V

∂s

(

TnlǫirsE
(m′)
ij xjxrY

∗
lm

)

ρ dV

−
∫

V

(∂rTnl)nsǫirsE
(m′)
ij xjxrY

∗
lm ρ dV

−
∫

V

Tnlǫirs

(

E
(m′)
is xr + E

(m′)
ij xjδrs

)

Y ∗
lm ρ dV.

The first integral of the above equality’s right hand member can be transformed into a

surface integration, in which a term of the form ǫirsxrns appears. Therefore, due to the

antisymmetry of ǫirs, this term vanishes identically. For the same reason, the second and

third integrands are also identically zero, the matrices E
(m)
ij and δij being symmetric.

Therefore,

FT
nlm(ω) = 0, (5.50)

for all values of n, l,m, that is, there is no power absorbed at toroidal eigenfrequencies,

and thus the absorption cross–section at such frequencies vanishes. As regards spheroidal

modes, the scalar products (sP
nlm, f

(m′)) are given by

(sP
nlm, f

(m′)) =

∫

V

f (m′) · [Anl(r)Ylm n −Bnl(r) in × LYlm ]
∗
dV

=

∫

V

ρ r
[

AnlY
∗
lmY2m′ +BnlE

(m′)
ij xj∂iY

∗
lm

]

dV,

where use has been made of (5.45) and the identity ( in×LYlm )i = −r∂iYlm (cf. equation

(A.1)). Angular integration of the term involving Anl is straightforward due to the

ortoghonality of spherical harmonics, while the term proportional to Bnl can be tackled

writing it as a divergence (which is transformed into a surface integral) plus additional

terms, as we did in the toroidal case. The final result is then reducible to purely radial

integrations:

(sT
nlm, f

(m′)) = δl2δmm′ M an, an ≡ 1

M

∫ R

a

r3[An2(r) + 3Bn2(r)] ρ dr, (5.51)
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where a and R denote the inner and outer radii of the spherical detector at hand. There-

fore combining the above equation with (5.49), we have

FP
nlm(ω) = δl2anG

(m)(ω). (5.52)

An immediate and remarkable consequence of this equation is that, when acted upon by

a tidal driving force, a viscoelastic solid absorbes power only at quadrupolar, spheroidal

frequencies. It must also be stressed that this fact is independent of the actual time–

dependence of the incoming wave, that is, Fourier components of the tidal driving force

outside the spheroidal quadrupolar spectrum do not interact with a (visco)elastic body4.

On the other hand, the explicit form of the radial functions An2(r), Bn2(r), given

in x3.3.2 and x3.4.2, allows the integration defining the coefficient an, both for the solid

and the hollow sphere. For the former case, its value has already been given in [76]:

as
n

R
= −3C(n, 2)

4π

[

β3(kn2R)
j2(qn2R)

qn2R
− 3

qn2

kn2
β1(qn2R)

j2(kn2R)

kn2R

]

, (5.53)

where we use the superscript s to indicate the solid sphere’s case, and we have dropped

the superscript P denoting the spheroidal family in kP
n2 and qP

n2 to ease the notation

(which is that of chapter 3). The expression for the hollow sphere’s case is obtained

along the same lines5

ah
n

R
= −3C(n, 2)

4π
[Ξ(R) − Ξ(a)], (5.54)

where we have introduced the dimensionless function

Ξ(z) ≡ z3

R3 − a3

[

1

qn2R
j2(qn2z) −

3Ctl

kn2R
j2(kn2z) +

Dll

qn2R
y2(qn2z) −

3Dtl

kn2R
y2(kn2z)

]

.

(5.55)

4This conclusion relies upon two assumptions, namely, the tidal structure of the driving force (which

is common to all metric theories of the gravitational field [129, 33]) and the property of Riemann’s tensor

of being traceless (which is specific to General Relativity). Relaxing the latter assumption gives room

to excitation of monolopolar as well as quadrupolar spheroidal modes [76, 12, 78].
5Equation (5.53) is obtained as follows. From the explicit form of An2 and Bn2, and the recurrence

relationship 3z−1j2(z) + j′2(z) = j1(z), we have

An2(r) + 3Bn2(r) = C(n, 0)

[

β3(knlR)j1(qnlr) − 3
qnl

knl
β1(qnlR)j1(knlr)

]

,

and the integration over r is immediately performed with the aid of the identity

z3j1(z) = − d

dz

[

z3j2(z)
]

.

Analogous relationships hold for spherical Bessel functions of the second kind, from which (5.54) ensues.
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Let us turn our attention to the time–dependence of the driving force, given by

g(m)(t). Vacuum Einstein’s equations admit plane wave solutions in the linear regime,

which in a transverse, traceless coordinate system take the form

hTT
ij (x, t) = hij sin[Ω(t− k̂ · x/c)], (5.56)

where k̂ is the unit propagation vector, Ω will be taken close to a spheroidal eigenfre-

quency, and hij is a constant matrix. The gauge conditions (5.43) translate into

hii = 0, hij k̂j = 0, (5.57)

and the Riemann’s tensor at the detector’s centre is given by

R0i0j(t) =
Ω2

2c2
hij sin Ωt. (5.58)

Due to the ommidirectionality of the detector, we can choose without loosing gener-

ality k̂i = δi3 (that is, a plane wave propagating along the z-axis). Then, the matrix hij

can be written in terms of the well–known ‘plus’ and ‘cross’ gravity–wave amplitudes (cf.

x1.3) as

hij =









h+ h× 0

h× −h+ 0

0 0 0









, (5.59)

and we immediately obtain6

g(0)(t) = g(±1)(t) = 0, g(±2)(t) =

√

2π

15
(h+ ∓ ih×)Ω2 sin Ωt, (5.60)

so that, in the notation of (5.38),

fm =

√

2π

15
[(δ−2m + δ2m)h+ + i(δ−2m − δ2m)h×] Ω2an. (5.61)

Whence, by virtue of equation (5.40), the power absorbed by a spherical detector when

excited by a gravitational plane wave of frequency Ω which is close to a spheroidal,

quadrupolar eigenfrequency ωn2 is

< P >pw=
πΩ4

15
(h2

+ + h2
×)Ma2

n

ωn2/Qn2

(ωn2 − Ω)2 + (ωn2/Qn2)2
. (5.62)

6The vanishing of g(0) and g(±1) can be seen as an outcome of the spin–two character of Riemann’s

tensor in General Relativity, according to the general classification procedure used in field theory[41].
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5.3.3 Incident energy flux and absorption cross–section

Once the power absorbed by a viscoelastic body from an impinging gravitational wave

has been calculated, the only magnitude left to compute the absorption cross–section is

the amount of energy carried in by the incoming radiation. The energy–momentum

tensor of a gravitational wave is given by [65, 66]

TGW
µν =

c5

32πG
< ∂µ(hαβ) ∂νhαβ >, (5.63)

where < . . . > denotes space–time average over several wavelengths7. This quantity

happens to be gauge invariant (as should be expected on physical grounds), and can thus

be calculated using the metric potentials, hTT
ij , as measured in a TT reference. For the

plane wave (5.56), the above equation yields

TGW
µν =

c5

64πG
(hijhij) kµkν , (5.64)

with kµ ≡ Ω
c (1, k̂) the wave four–vector. The energy flux (energy per unit time per unit

area) sweeping the detector for an impinging plane wave propagating along the z–axis is

then

Φ = TGW
0i k̂i =

c3

32πG
Ω2(h2

+ + h2
×). (5.65)

We can now write down the final expression for the absorption cross–section of a

spherical gravitational detector acted upon by a gravitational plane wave. We have,

from equations (5.62) and (5.65),

σpw
abs(Ω) =

< P >pw

Φ
=

16π2

15

GMv2
t

c3
(kn2an)2

2ωn2/Qn2

(ωn − Ω)2 + (ωn2/Qn2)2
, (5.66)

where the impinging wave’s frequency Ω is assumed close to a quadrupolar frequency ωn2

belonging into the spheroidal spectrum, vt =
√

µ/ρ is the velocity of transverse sound

waves in the detector, and the coefficients an are given by equations (5.54) and (5.53).

For future reference, we quote here also the value of the integrated cross–section σ,

given by

σ ≡ 1

2π

∫ ∞

−∞

σabs(Ω)dΩ =
16π2

15

GMv2
t

c3
(kn2an)2. (5.67)

7The average procedure (known as Brill–Hartle averaging[19, 4]) is fully described in the references

given, and must be tackled with some care when the gravitational wave propagates in a curved back-

ground. When the underlying space–time is flat or static (which is the case of interest here), Brill–Hartle

average reduces to a simple space–time average. This smearing endows the quantity between brackets

in (5.63) with the property of gauge invariance, so that it cannot be made to vanish by a coordinate

transformation, unlike the case of the energy pseudotensor.
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which will be relevant when computing the sphere’s sensitivity to short duration bursts.

We should note that, when deriving the above formulæ for absorption cross–sections,

we have also disregarded the power re–radiated by the detector due to the oscillations

induced by the impinging wave, which should be substracted from the power (or energy)

gained by the solid as a result of the driving force acting on it. This is nevertheless

an excellent approximation, for while the solid looses energy by internal friction at a

rate ω/Q ≈ 10−4 Hz, the emission of gravitational radiation causes the oscilator to loose

energy at a rate Γgrav ≈ 10−35 Hz (see below).

5.3.4 Alternative views

The rest of this chapter is devoted to an analysis of the performance of spherical

viscoelastic bodies as detectors of gravitational waves, which is largely based upon the

formulæ just derived for their absorption cross–section. But, before delving into this

discussion, a few comments on equation (5.66) are in order. Analogous expressions

describing the sensitivity of spherical detectors can be found elsewhere in the literature

[127, 93, 5], although they are derived in a by no means analogous way. Thus, Weinberg

[127] makes use of an optical theorem (which is a consequence of the conservation of

energy), together with two supplementary assumptions: that the free vibrations of solid

have the time dependence exp{iωnt− ωnt/Q}, and that the effect of a plane wave with

frequency Ω close to ωn is merely to excite the aforementioned free vibration8. Relying

upon these hypotheses, it is possible to derive the following form for the absorption

cross–section of a spherical detector acted upon by a plane wave

σpw
abs =

5 π c2 Γgrav

2ω2
n

2ωn/Q

(Ω − ωn)2 + (ωn/Q)2
. (5.68)

Here, Γgrav stands for the decay rate of the oscillations owing to emission of gravitational

radiation. The key idea behind the reasoning yielding (5.68) is to derive the absorption

capabilities of the detector by studying the scattered wave at infinity, along essentially

the same lines as done in electrodynamics or quantum mechanics. Such an approach

circumvents the detailed analysis of the interaction between gravitational waves and

viscoelastic solids, which has been the conducting line of the derivation presented here.

Let us show that equation (5.68) is identical to our expression for the absorption

cross–section (5.66), a reassuring and remarkable conclusion. By definition, the rate of

8We have seen in chapter 4 that the first hypothesis is fully justified, while the second one holds only

when ωn happens to be a quadrupole spheroidal eigenfrequency.
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energy loses due to emission of gravitational radiation is given by the ratio

Γgrav =
Prad

Eosc
, (5.69)

where Prad is the radiated power and Eosc stands for the energy of the acoustic oscillations

induced in the solid. Provided these vibrations are given by a normalized normal mode

of vibration s(x, t) with frequency ω, the mechanical energy is immediately computed

Eosc =
1

2

∫

V

{

ρ sis
∗
i + si,jσ

∗
ij

}

dV = M ω2. (5.70)

On the other hand, the emitted power can be safely computed with the aid of the well–

known quadrupolar approximation [73, 15], which gives

Prad =
G

5c5
d3Qij

d t3
d3Q∗

ij

d t3
, (5.71)

where Qij denotes the solid’s quadrupolar moment, defined as

Qij(t) ≡
∫

V

ρ(x, t) r2dij(θ, φ) dV, dij(θ, φ) ≡ ninj −
1

3
δij , (5.72)

and the symmetric, traceless tensor dij can be written in terms of the E–matrices (5.44)

as

dij(θ, φ) =
8π

15

m=2
∑

m=−2

Y ∗
lm(θ, φ)E

(m)
ij . (5.73)

The homogenous, underformed sphere has vanishing quadrupolar moment, but, when it

is vibrating in a normal mode, Qij varies as a result of two effects, namely, changes in

the sphere’s density and changes in the sphere’s shape due to radial displacements. Thus,

the variation of quadrupolar moment, δQij , is, to first order in the deformation,

δQij =

∫ R+δR

0

r4 dr

∫

dΩ (ρ+ δρ) dij

≈
∫

dΩ dij

{

ρδRR4 +

∫ R

0

r4δρ dr

}

, (5.74)

where dΩ ≡ sin2 θ dθdφ, and δR and δρ stand, respectively, for the normal displacement

at the sphere’s surface and the variation of density due to the deformation9. These

variations are given by

δR = n · s|r=R, δρ = −ρ∇ · s. (5.75)

9For the sake of clarity, we limit ourselves to the case of a solid sphere. The calculation for the hollow

sphere can be tackled analogously.
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From the discussion in previous chapters, we know that the above variations both vanish

when s belongs into the toroidal family. On the other hand, when spheroidal modes are

considered, it is immediately seen that δR and δρ are proportional to Ylm(θ, φ), with

(l,m) the indices labelling the mode at hand. From equation (5.73) it is thus apparent

that the angular integrations giving δQij are zero unless l = 2. Therefore, we again draw

the conclusion that only quadrupole spheroidal modes have a non–vanishing absorption

cross–section. While in our previous derivation this was shown as a result of the tidal form

of interaction between gravitational waves and viscoelastic solids, here it follows from the

fact that the sphere emits gravitational waves only at the aforementioned frequencies.

For quadrupole spheroidal modes we have, in the notation of chapters 3 and 4,

δR = e−iωn2
tAn2(R)Y2m(θ, φ),

δρ = e−iωn2
t C(n, 2)β3(knlR) qn2j2(qn2r)Y2m(θ, φ)

whence, using (5.74) and the explicit expression for An2(R), 10

δQij = e−iωn2
t 4C(n, 2)

5
MR

[

β3(kn2R)
j2(qn2R)

qn2R
− 3

qn2

kn2

j2(kn2R)

kn2R

]

E
(m)
ij ,

or, using the coefficient as
n defined in (5.53),

δQij = −e−iωn2
t 16π

15
M as

nE
(m)
ij . (5.76)

Introducing this value for δQij into equation (5.71) and making use of the orthogonality

equations (5.46), we obtain

Prad =
32πG

75c5
(Mas

n)2ω6
n, (5.77)

whence

Γgrav =
32πG

75c5
M(as

h)2ω4
n, (5.78)

and combining the above equation with (5.68) we recover the expression (5.66) previously

derived for the absorption cross-section.

5.4 Review of cylindrical bar sensitivity

The use of resonant rigid bodies as gravitational wave antennæ has now a long history,

starting in the pioneering works, both theoretical and experimental, of Weber in the early

10The r–integration appearing in (5.74) is immediately performed with the aid of the identity

[z4j3(z)]′ = z4j2(z), and the expression given for δQij is then obtained using the recurrence relationship

j′2(z) + j3(z) = 2j2(z)/z.
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sixties (cf. chapter 1 and references therein). The problem of detection of gravitational

waves by a resonant antenna has been thus clarified in its main aspects [96, 54, 122, 123],

with special emphasis in the case of long cylindrical bodies. This is the only antenna

geometry actually made operative by experimental reasearchers, and it is relatively simple

to be tackled theoretically. By “long cylindrical body” we mean a cylindrical bar of length

L very long compared to its diameter. The only modes of vibration to be considered for

such a detector are the longitudinal ones, whose frequencies are

ωn =
vs

L
π n, n = 1, 2, . . . ,

with vs the velocity of sound in the bar. The effects of internal friction are taken into

account by introducing a quality factor Q associated to each normal mode of vibration

in the fashion of our equations for quasi–normal modes of viscoelastic solids. When the

body is acted upon by a plane gravitational wave of frequency ω close to ωn (for some

fixed n), the equations of motion are easily solved, and the magnitudes entering the

definition of absorption cross–section can be explicitly computed [108, 105], yielding, for

odd n,

σcyl
abs =

8

n2π

GMv2
s

c3
sin4 θ cos2 2ψ

2ωn/Qn

(ω − ωn)2 + (ωn/Qn)2
, (5.79)

where M is the mass of the bar, θ stands for the angle between the direction of propa-

gation of the gravitational wave and the cylinder longitudinal axis, and ψ describes the

wave’s polarization. When the resonance frequency has even n, the absorption cross–

section vanishes. The above equation shows that, due to the n2 decay, the cylinder is

only operative at its first longitudinal eigenfrequency11, and that its sensitivity is highly

dependent on the direction and polarization of the impinging wave (in fact, the bar is

blind to waves propagating along its longitudinal axis or having the wrong polarization

state). This strong directionality imposes a serious penalty in the performance of cylin-

drical bars as gravitational wave detectors, and six bars are needed at least to attain

isotropic sky coverage at one frequency[25]. A more accurate measure of a single cylin-

der’s sensitivity is therefore obtained after averaging of equation (5.79) over polarisations

and incidence directions:

σcyl
abs,avg =

32

15n2π

GMv2
s

c3
2ωn/Qn

(ω − ωn)2 + (ωn/Qn)2
. (5.80)

11Rasband and Hier [104, 62] have computed the normal modes of vibration of a cylinder for a finite

length–diameter ratio, and have shown that the absorption cross–section is also very small for non–

longitudinal modes and the actual dimensions of operative cylindrical detectors.
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When a broadband burst with spectrum energy density F (ω) hits the cylinder, the energy

it absorbs can be computed as

Ea ≈ F (ω1)

∫

σabs(ω)
dω

2π
, (5.81)

where σabs(ω) stands for the absorption cross–section for plane waves (5.79). After

performing the integration we obtain

Ea

F (ω1)
=

8

π

GMv2
s

c3
sin4 θ cos2 2ψ. (5.82)

The energy absorbed, Ea, must be compared to the variance of the noise energy fluc-

tuations, En, of the detector. This energy noise can be written as the sum of two

contributions, originating from two uncorrelated Gaussian processes: the thermal noise

in the resonant mass and the electronic noise of the readout system [56, 103, 117]. We

assume that a fraction β of the antenna energy is converted into electromagnetic en-

ergy by a noiseless transducer; the signal is then fed to an amplifier, assumed to have

an additive noise at its output, whose spectral density is Sq; the amplifier also exerts

a back action noise force onto the antenna mode with spectral density Sf . The en-

ergy fluctuations in the readout system can then be expressed by the noise temperature

Tn = k−1
B (Sfω

2Sq)
1/2, where kB is the Boltzmann constant. If antenna and transducer

are correctly matched, it is found that

En =
kBT

βQ
+ kBTn, (5.83)

where T is the thermodynamic temperature of the cylindrical bar. It is costumary to

express the energy noise as the Boltzmann constant times a detector noise temperature

Teff , writting En = kBTeff . The detector’s signal–to–noise ratio (SNR) is defined by

SNR ≡ Ea

kBTeff
, (5.84)

and the sensitivity of the detector, i.e., the minimum detectable gravitational amplitude

hmin (SNR=1), can be written as

hmin =

√

4

π

GkBTeff

c3σ
, (5.85)

where σ stands for the integrated cross–section. The detector bandwith, defined by

the width of the SNR resonance curve, is of order βω1, much larger than the purely

mechanical resonance linewidth ω1/Q of the vibrational mode. Since the beginning of
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the gravitational wave research, all efforts for improving the sensitivity have been focused

on the reduction of the effective noise temperature Teff . The use of cryogenic technologies

permitted to reduce Teff by a factor of 104, from the tens of Kelvin to a few millikelvin.

Further developements are in progress in order to improve the energy resolution up to

one vibrational quantum (h̄ω1 at 1 kHz corresponds to Teff ≈ 10−7K).

The above considerations can be applied to transducers attached to any resonant

antenna. As we shall see, spherical detectors offer the possibility of further improvement

in hmin via a higher value of σ.

5.5 Sensitivity of the solid sphere

We have seen in the previous sections that the solid sphere’s sensitivity to gravita-

tional waves is basically described by the dimensionless factor

Fn(λ/µ) = (as
nk2n)2. (5.86)

As the above notation explicitly displays, this is only a function of the quadrupole mode

at hand (n), and the elastic properties of the sphere, via the ratio of its Lamé coefficients

(or, if preferred, its Poisson ratio). Owing to the symmetry of the spherical shape, neither

the angle of incidence of the incoming wave nor its polarization make any difference in

the sphere’s capabilities of detection, this being the first and more apparent advantage

of such a detector over cylindrical bars (and also over interferometric detectors). For the

sake of comparision, we shall rewrite the cylinder’s cross–section (5.79) as

σcyl
abs = Fcyl

n (λ/µ, θ, ψ)
16π2

15

GMv2
t

c3
2ωn/Q

(ω − ωn)2 + (ωn/Q)2
(5.87)

where Fcyl
n depends now also on the incoming wave’s polarisation and angle of incidence.

For an optimally oriented (θ = π/2) and polarized (ψ = 0) wave, it attains the maximum

value

Fcyl,max
n (λ/µ) =

1

n2

8

π

15

16π2

v2
s

v2
t

=
1

n2

15

2π3

3λ+ 2µ

λ+ µ
, (5.88)

where we recall that n must be odd. Averaging over polarizations and incidence angles

reduces Fcyl
n to the value

Fcyl,avg
n (λ/µ) =

1

n2

2

π3

3λ+ 2µ

λ+ µ
. (5.89)

In the case of the sphere’s Fn we cannot write down closed expressions like the one above,

and numerical calculation is needed. Table 5.1 displays the results of such calculation
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n ωsph ωcyl Fn/F1 Fcyl,max
n /F1 Fcyl,avg

n /F1

1 2.6501 2.6501 1.0000 0.8545 0.2279

2 5.0966 5.3001 0.3819 0 0

3 8.6255 7.9502 0.0369 0.0949 0.0253

4 10.9857 10.6002 0.0113 0 0

5 12.2916 13.2503 0.0390 0.0342 0.0091

6 15.3502 15.9003 0.0150 0 0

7 17.8584 18.5504 0.0027 0.0174 0.0046

8 18.6765 21.2005 0.0166 0 0

9 21.7505 23.8505 0.0078 0.0105 0.0028

10 24.4042 26.5006 0.0012 0 0

11 25.0053 29.1506 0.0092 0.0071 0.0016

12 28.0915 31.8007 0.0047 0 0

13 30.8383 34.4507 0.0007 0.0051 0.0013

14 31.3148 37.1008 0.0058 0 0

15 34.4096 39.7509 0.0032 0.0038 0.0010

Table 5.1. First eigenfrequencies and normalised F–factors for the absorption

cross–section of a sphere and a cylinder with λ/µ = 2. The normalization factor

takes the value F1 = 0.755. The frequencies are expressed in units of vt/R, and

the cylinder’s length is assumed to be L = R/0.516, so that both detectors are

tunned to the same fundamental frequency.

(which has been performed with the aid of the C-library sphere described in appendix

C) for the common case λ/µ = 2 (corresponding to a Poisson ratio equal to 1/3). We

have chosen R/L = 0.516, which makes the first eigenfrequency of the sphere equal to

that of the cylinder, although it must be remembered that the values of the F–factors

are independent of the dimensions of the detector. A glance at the given figures shows

that, for equal masses, the solid sphere is slightly better that the cylinder for optimal

orientation. If we consider the averaged sensitivity, the sphere’s cross–section becomes a

factor of 6 better for equal masses. We also find a remarkable sensitivity at the sphere’s

second mode, only about half the maximum for the fundamental mode. So a spherical

antenna is potentially sensitive at two frequencies, this being a new advantage of this

kind of antenna over cylindrical ones. For higher modes, both detectors show very low
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Figure 5.1. Sensitivity parameters as a function of Poisson ratio ν. The last

graphic displays the second sphere’s and the first cylinder’s modes over the first

mode of the sphere, which has the better sensitivity at any ν.

sensitivity12.

Regarding the dependence of Fn on the material’s elastic properties (which is again

explicit in Fcyl
n ), we have plotted in figure 5.1 these parameters as a function of Poisson

ratio ν 13 for the first and second modes of the sphere and the cylinder’s first one for

optimal incidence and polarization. We observe that while F1 monotonically increases

with ν, F2 presents just the opposite behaviour, so that the relative sensitivity F2/F1

shows little variability.

Let us turn again our attention to the use of spherical antennæ as multifrequency

detectors. The resonant detectors being narrow–band, it has been suggested[69, 89, 88]

the use of a so–called xylophone consisting of an array of solid spheres with decreasing

12In fact, it is easily shown using the asymptotic expansions given in chapter 2, that Fn falls also as

n−2 for high frequencies.
13We remind the reader of the relationship between the Poisson ratio, which has been denoted σ

in the previous chapters, and the Lamé coefficients—equation (3.32): λ/µ = 2ν/(1 − 2ν). Therefore,

Fcyl,max
n = (15/π3)(1 + ν).
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Frequency (Hz) Diameter (m) CS ratio

910 3.10 1

1747 1.61 2.72

2959 0.95 1.23

3750 0.75 0.92

4217 0.67 3.81

5217 0.54 2.84

Table 5.2. A xylophone of spheres of Al 5056 whose fundamental frequencies are

equal to the succesive harmonics of the larger one. In the third column, the ratio of

the cross–section of the larger sphere to that of the smaller one at the corresponding

frequency.

sizes, so that their fundamental frequencies form an ascending series. A xylophone would

constitute a wide–band detector, which is shown to present even better sensitivity than

planned interferometric detectors (like, e.g. LIGO[1] or VIRGO[53]) in the range of

frequencies over 750 kHz. Consider now a xylophone consisting of several solid spheres

made of the same material, such that sphere 2 has its fundamental frequency at the

second frequency of sphere 1 (which will be the larger one), sphere 3 has its fundamental

frequency at the third frequency of sphere 1, and so on. In other words, we are considering

a xylophone of spheres whose fundamental frequencies are equal to succesive harmonics

of a larger one. Table 5.2 shows the frequencies and diameters of these spheres (which,

for the sake of concreteness, have been supposed of the common alloy Al 5056). Also, in

the third column, we display the ratio of the cross–section of the largest sphere at each

frequency to that of the respective smaller ones in their first mode, as obtained from the

data in table 5.1. These numbers indicate that, except for the nonsignificant exception of

the fourth mode, the single sphere has better sensitivity than the xylophone. In order to

graphically display the situation, we plot in figure 5.2 the strain noise spectrum h̃(ω), for
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the first two spheres14. It has been calculated with the aid of the model for the readout

arrangement proposed by Johnson and Merkowitz [69, 89]. The figures correspond to

3.1 and 1.6 m diameter spheres of Al 5056 operated at the quantum limited noise level.

The just described “single detector xylophone” has the limitation that its frequencies are

fixed and too widely spaced; still, xylophone proposals [69, 89] should benefit from the

above considerations in the sense of reducing the number of required elements in them.

Actual spherical antennæ working on the same frequency range as operative cylin-

drical bars would have the further advantage of being far more massive, and, therefore,

presenting an even better cross–section. Standard aluminium cylinders have typically

length–diameter ratios around 5. If a sphere made of the same material has to be tunned

to such a cylinder, it must have a diameter close to the bar’s length, and, therefore, the

mass of the sphere will be 14 times that of the cylinder. This is displayed in table 5.3,

together with the integrated cross–section, for projected spheres and existing cylinders15,

always under the assumption of optimal orientation of the latter. We see that, at the

first mode, the sphere has an energy sensitivity over 20 times that of a cylinder, and that

the second mode absorbs over 15 times more energy than the fundamental mode of a

cylinder.

As mentioned in x5.4, the amplitude sensitivity for broadband bursts of a resonant

antenna is a function of the detector noise temperature, Teff , which describes the energy

fluctuations in the readout system and the thermal noise in the resonant mass, and of

the integrated cross–section, according to equation (5.85). For a detector working at the

quantum limit[56]

TQ = 4.8 × 10−8K

(

f

1000 Hz

)

,

where f is the frequency of resonance, and using equation (5.85), we have that the

14The strain noise spectrum is defined as the square root of the fictitious strain noise spectral density

needed to mimic the observed noise at the detector’s noise. Thus, when the detector is swept by a plane

wave of frequency ω and amplitude ho, the signal-to-noise ratio is given by [117]

SNR =
ho

h̃(ω)

1
√

2∆f

, where ∆f stands for the inverse of the integration time, i.e., the bandwith at which the detector output

is analyzed. We note that h̃ has dimensions of Hz−1/2.
15The quoted numbers correspond to the detectors Explorer at CERN Geneva[7], Nautilus at INFN

Frascati[9], Auriga at INFN Legnaro[24], and Allegro at LSU[112].



124 Chapter 5. Sensitivity of spherical detectors

500 800 1100 1400 1700 2000
frequency (Hz)

−23.5

−23.0

−22.5

−22.0

−21.5

−21.0
lo

g 
(s

en
si

ti
vi

ty
)

Figure 5.2. Strain noise spectrum h̃ for various detectors at the quantum limit:

solid lines for the lowest quadrupole mode of Al 5056 spherical detectors 3.1 and

1.6 m diameter, respectively; dot–dashed for the second quadrupole mode of the

3.1 m sphere, which is seen to present better sensitivity that the second sphere’s

first mode, and dashed lines for the equivalent cylindrical bar optimally oriented

(3 m long and 0.6 m diameter).

minimum burst amplitude detectable by a resonant antenna can be written as

hmin = 2 × 10−22

(

Teff

TQ

)1/2(
100 t

M

)1/2(
f

1000 Hz

)1/2(Fn

F1

)1/2

(5.90)

This gives hmin ≈ 10−21 for cylindrical bars optimally oriented at the fundamental mode

and spheres at its second mode, while the amplitude sensitivity of the sphere’s first mode

would be of order 10−22. This should be enough to see supernova events out to the Virgo

cluster, with an estimated event rate of a few per week[111].
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Cylinder Sphere

f1 = 910 Hz

∣

∣

∣

∣

∣

f1 = 910 Hz

f2 = 1747 Hz
∣

∣

∣

∣

∣

L = 3.0 metres

D = 0.6 metres
φ = 3.1 metres

Mc = 2.3 tons Ms = 42 tons

σ1 = 4.3×10−21 cm2 Hz

∣

∣

∣

∣

∣

σ1 = 9.2×10−20 cm2 Hz

σ2 = 3.5×10−20 cm2 Hz

(Optimal orientation) (Omnidirectional)

Table 5.3. Integrated cross–section for a typical Al 5056 cylinder in its first lon-

gitudinal mode with optimal orientation with respect to the incoming radiation,

and for a sphere of the same material and fundamental frequency in its first two

quadrupole modes. Antenna dimensions are also specified.

5.6 Sensitivity of the hollow sphere

The key parameter describing the hollow sphere’s sensitivity is the counterpart of Fn,

i.e.,

Fh
n (λ/µ, η) = (ah

nk2n)2, (5.91)

where the coefficient ah
n has the somewhat cumbersome form given in equation (5.54).

We make explicit the existence of a new parameter: the ratio between the sphere’s inner

and outer radii, η. We have seen that, due to the fact that they share the same group

of symmetries, the only difference between the formulæ describing the sensitivity of a

solid and a hollow sphere is the numerical value of this coefficient. Resorting again to

the C–library sphere (appendix C), we have plotted in figure 5.3 the value of Fh
n (2, η) for

the first quadrupole modes and variable η.

We obtain, to begin with, that the better sensitivity is attained at the fundamental

mode of a solid sphere (in fact, we use Fh
1 (2, 0) to normalize the factors plotted), and that

Fh
1 decreases monotonically with increasing η. But, as the graphic shows, the second

mode sensitivity presents just the opposite behaviour. Indeed, for η ≥ 0.38 the detector’s

sensitivity is larger at the second quadrupole mode than it is at the first. It always keeps
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Figure 5.3. Sensitivity parameter F
h
n for a hollow sphere with Poisson ratio ν =

1/3, as a function of η = a/R. It has been normalized to F
h
1 (2, 0) = F1(2) =

0.775.

below that of a solid sphere, but, for a given mass, thinner shells have lower resonance

frequencies, and this is a very desirable property for a gravitational wave detector. Let

us be more specific at this point. If we vary η maintaining M constant (so that Fh
n gives

us the absorption cross–section up to a multiplicative factor), we are bound to increase

the outer radius of the hollow sphere. As we have seen in chapter 3, this implies a lower

resonance frequency because the dimensionless eigenvalue kR depends only on η for a

given material. To put it in other words, the resonance frequency of a hollow sphere of

constant mass depends on η through the equation

ω(η) =
kR

vt

(1 − η3)1/3, (5.92)

where kR has the η–dependence described in x3.4.2. The situation is depicted in figure

5.4, where the first two eigenfrequencies of an Al 5056 hollow sphere of constant mass

M=100 tons are plotted as a function of η.

Inspection of the data represented in figures 5.4 and 5.3 shows that a thin hollow
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Figure 5.4. First and second eigenfrequencies (in Hz) for an Al 5056 sphere of con-

stant mass M = 100 tons. The dotted line indicates the value of equal sensitivity

η ≈ 0.38.

sphere (η ≈ 0.9) can operate as a gravitational wave antenna with high sensitivity at

a (remarkably low) frequency of 200–300 Hz and also at a frequency around 1 kHz16.

We have picked up three possible values for η in table 5.4, where we present a few

characteristics of hollow Al 5056 spheres of a fixed mass of 100 tons: diameter, thickness,

resonance frequencies and normalized sensitivities. These figures open the possibility of

using omnidirectional detectors at frequencies in the range 200–800 Hz, typically covered

by interferometric antennæ such as LIGO or VIRGO which do not offer isotropic sky

coverage. Moreover, these thin shells can be used simultaneously in the frequency range

over 1 kHz, usually covered by resonant antennæ. Thus, a xylophone of hollow spheres

would offer the possibility of covering, with isotropic sensitivity, virtually any frequency

over 200 Hz.

16Although the third quadrupole mode also presents very high sensitivity for the thin shell—see figure

5.3– k32R belongs to the group of divergent eigenvalues for η → 1. This resonance frequency is thus too

high (≈ 104 Hz) to be of interest.
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Diam. (m) Thick. (cm) f1 (Hz) fz (Hz) Fh
1 /F1 Fh

2 /F1

5.06 60 300 1093 0.38 0.60

5.62 44 250 960 0.36 0.54

6.65 29 200 790 0.35 0.51

Table 5.4. Three proposals of 100 ton, hollow sphere detectors operating at two

frequencies. The sensitivities are normalized to that of a solid sphere of the same

mass.

Resorting again to equation (5.85) giving us the minimum burst amplitude detectable

by a resonant detector, we obtain, taking into account that a burst presents a broadband

spectrum and can be monitored at two frequencies—200 Hz and 760 Hz, say—, a burst

sensitivity of

hmin ≈ 10−22 − 10−23. (5.93)

This sensitivity is perfectly comparable with that of projected long baseline interferome-

ters [1, 53], which gives a very attractive possibility of making observations in coincidence

between the two classes of gravitational wave antennas.



Chapter 6

Gravitational wave astronomy

We present in this chapter a brief review of some issues laying somewhat out the

logic scope of our work, but which are nevertheless of great importance to the subject of

gravitational wave detection.

The first section gives a sketchy discussion on the deconvolution problem for spheri-

cal detectors, which has been extensively treated in the literature (see [119] for the first

approach to this subject, and new discussions in [89] and references therein). Prop-

erly chosen transducer configurations endow a single spherical detector with isotropic

sky coverage. Nevertheless, one sphere gives us not all the properties of the incoming

gravitational wave. The missing information can be obtained by means of a two–sphere

observatory, which offers a number of additional capabilities. These are summarized

in section 6.2. We end this final chapter with a brief catalogue of expected sources of

gravitational waves reaching the Earth, and the way spherical detectors would see these

signals.

6.1 Signal deconvolution

Once the vibration modes of the sphere are accurately known, we need a suitable

readout system to monitor them. This is accomplished by means of a set of transducers

attached to the sphere. And once we know that such and such modes have been excited

and how much they have been excited, we want to use this information to trace back the

causes of their being excited in that particular way or, as we shall say, to deconvolve the

signal.
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We now describe a deconvolution procedure on the basis of the observation of the

vibrations of a spherical antenna. Let us consider the simpler situation, to begin with,

in which we know the direction of incidence of the gravitational wave, e.g., because the

source is known from astronomical observations or even a network of other gravitational

wave antennæ. Direct measurement of the sphere vibration states will then produce a

complete deconvolution of all the coefficients hij in a purely phenomenological way, i.e.,

independently of any underlying assumption about a particular theory of gravity. The

data obtained in this way can then be compared to the predictions of the theory in order

to either confirm or discard it.

If, more realistically, the direction of incidence is unknown, then knowledge of the

sphere’s vibrations is insufficient to decide on whether this or that theory is confirmed

by the observations made. This is because each theory is characterised by a specific

mode pattern, or by a canonical form of the matrix hij . Such canonical form shows in

a coordinate frame suitably adapted to the propagation direction of the wave (e.g. the

TT frame oriented along the wave’s propagation direction, when General Relativity is

the theory to be checked), and this frame will in general be rotated with respect to the

laboratory frame. Not knowing the rotation angles is therefore a strong limitation to

establish the validity of a given theory.

A possible way out consists in assuming a certain theory, for example General Relativ-

ity, and then determine the rotation angles on that hypothesis. This idea was suggested

by Wagoner and Paik [119], and is as follows. As we have seen in x5.2 when solving the

equations of motion for a viscoelastic solid under the action of a driving force f , only

those modes sN with non–null scalar product (sN , f) are excited as a result of such ac-

tion. It has also been shown that, if a tidal force is assumed, only quadrupole spheroidal

modes have a non–vanishing scalar product with f ; in fact, when the wave is travelling

down the z–axis of the detector (that is, when the adapted TT and the laboratory frames

have the same orientation, and thus the metric perturbation hij takes the form (5.59)),

the field of displacements s(x, t) is written as the sum of two terms

s(x, t) = fn22(t)s
P
n22(x) + fn2−2(t)s

P
n2−2(x), (6.1)

where n labels the spheroidal eigenfrequency being monitored, and fn2±2(t) have Fourier

transforms FP
n2±2(ω) given by equation (5.52). Provided the transducers measure radial

displacements only, we shall be interested in the normal projection of s at the sphere’s

surface:

a(θ, φ, t) ≡ s(x, t) · n|r=R = a−2(t)Y2−2(θ, φ) + a2(t)Y22(θ, φ), (6.2)
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where the amplitudes a±2(t) are obtained from (6.1) and the explicit expresion of sP
nlm,

a±2(t) = A2±2(R) fn2±2(t). (6.3)

But, in general, the wave’s propagation direction and polarization will be rotated by

three Euler angles (α, β, ψ) with respect to the laboratory frame1. Thus, the matrix hij

will look in this frame as a full 3x3 traceless matrix, and the field of normal displacements

will be given by a linear combination of the form

a(θ, φ, t) =

m=2
∑

m=−2

am(t)Y2m(θ, φ). (6.4)

The am(t) amplitudes can then be monitored by measuring a(θ, φ, t) at five positions on

the sphere’s surface and making linear combinations of the output2.

Let am(t) (m=−2,. . . ,2) be the measured amplitudes of the five quadrupole modes

of the sphere. If a helicity–2 gravitational wave is responsible for the excitation of these

amplitudes —as would happen should General Relativity be true— then we are guar-

anteed that a rotation of the coordinate axes exists which reduces the set of measured

modes to the canonical set âm(t)= (â−2(t),0,0,0,â2(t)). If, following standard notation

[43], we call D(2)
mm′(α, β, ψ) the coefficients of the rotation matrix, then we can write

âm(t) =

2
∑

m′=−2

D(2)
mm′(α, β, ψ) am′(t) , m = −2, . . . , 2 (6.5)

and so, by setting â−1(t)=â0(t)=â1(t)=0 we have a homogeneous system of three equa-

tions to determine, e.g., the angles (α-ψ,β). Once these are known, the other two equa-

tions define â−2(t) and â2(t) up to a polarisation angle, and these in turn determine

h+(t) and h×(t) [119].

1The first two of these angles define the source direction in the laboratory frame, while the third

defines the wave’s polarisation ellipse with respect to the line of nodes.
2If tangential transducers are available, it is possible to find five positions each one being a node for

all the modes but one in a certain direction. For instance, fixing the laboratory frame, only the (2, 0)

mode has radial displacements at the north and south poles; only the (2,±1) modes have non–zero dis-

placements along the local meridian at locations (θ=π/2,ϕ=0) and (θ=π/2,ϕ=π/2); and only the (2,±2)

modes have non-zero displacements along the equator at locations (θ=π/2,ϕ=π/4) and (θ=π/2,ϕ=π). A

complete set of transducers can then be constituted by one radial plus four tangential transducers. Each

quadrupole mode is equipped with its transducer and its amplifier, forming an independent detection

channel. The five independent channels act as five independent detectors with different orientations.

Sets of radial transducers have been proposed by Forward [48], Johnson and Merkowitz [69], Michelson

and Zou [91] and recently by J.A. Lobo and M.A. Serrano [79]
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It must however be cautioned that the viability of this procedure is strongly dependent

on General Relativity being true: we can use e.g. (6.5) to determine (α − ψ,β), but this

will yield the wrong answer for the actual angles if General Relativity fails to be correct.

Should that happen, we are expected to find algebraic incompatibilities as we proceed

further to evaluate h+ and h×; such incompatibilities are to be held as vetoes on the

hypothesis that General Relativity is true.

In order to unambiguously assign a sudden excitation of the detector to a gravita-

tional wave, several types of tests can be applied. The most general involves monitoring

the detector also at frequencies other than the l=2 spheroidal modes. One can for in-

stance look at toroidal modes, which, as we have rigorously proved, are never excited

by gravitational waves. The lowest quadrupole toroidal frequency is so near the lowest

spheroidal (less than 6%) that a veto based on the excitation of this mode is extremly

efficient: any event which is seen at this frequency cannot be due to an impinging grav-

itational wave. This would require a 6% wideband transducer, or an extra number of

transducers to monitor the sphere’s vibration at the toroidal frequency.

We should note that the signal deconvolution of one resonant antenna will not pro-

vide all the information about the impinging gravitational wave that is needed to unam-

bigously determine its physical properties. In the next subsection, we describe which are

the parameters not obtanaible from deconvolution of a single antenna readout, and how

two spherical detectors would constitute a complete gravitational wave observatory.

6.2 Two sphere observatory

There are certain details in the signal deconvolution process which cannot be sorted

out with a single sphere. For example, if the direction of incidence is unknown and

the procedure just described is applied, there is an unavoidable ambiguity: one cannot

possibly tell a given source from a source in its antipode in the sky.

Also, nothing can be said with a single gravitational wave antenna about the propa-

gation speed of gravitational waves.

An array of two spheres provides the necessary means to tackle these problems: if the

two antennas are placed in strategic places on the earth’s surface so that most poten-

tial sources are seen under sufficiently different angles, this would remove the direction

ambiguity; on the other hand, if the signal arrival time can be determined accurately

[25], then the time delay between detection at the two antennas, together with the in-
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formation on the source position, enables the direct determination of the gravitational

wave propagation speed. This measurement may be used as an additional check of our

theoretical predictions.

A two sphere array will help solving these problems, but it will also produce redundant

information. The latter can be used as a local disturbance veto on possible signals, thus

improving detection probability. Let us be more specific on this point.

A coincidence experiment requires that all the detectors have signals above a given

threshold at the same arrival time within a certain time window. An observatory of two

spherical detectors has two advantages over other proposed observatories, such as the one

constituted by six cylindrical bars [25] or that consisting of three laser interferometers

[37, 38]. First, in the presence of a signal the two spheres will measure the same energy.

Six bars or three interferometers will have different individual orientations, and therefore

cannot use this criterion for vetoing possible signals, except at larger SNR’s [91]. And

second, the application of the orientational deconvolution procedure to the two individual

spheres provides the additional criterium of equal source direction.

These properties of a two sphere observatory provide criteria which can be used to

drastically reduce the chances of accidental coincidences, thereby increasing the con-

fidence level of detection. For instance, when accidental events from cosmic rays are

considered (over 104 are expected per day in a several ton resonant detector operated

at the quantum limit[3]), it is enough to place just one detector in an underground

laboratory to reduce the number of random coincidences to about one in three years.

We can briefly summarise the essential additional features of a two-sphere observatory:

• it enables unambiguous determination of the source position in the sky,

• it enables determination of the gravitational wave propagation speed, and

• it provides powerful vetoes against local disturbances.

Obviously, an observatory with more than two antennæ (in the spirit of the xylophe

previously discussed) will further reliability of detection. Also, a network of several

antennæ can determine the direction of the wave, which will facilitate the procedure

described in the previous section.
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6.3 Likely sources: their detectability

A gravitational wave detector should be designed looking to the features of potential

sources giving a reasonable rate of observable events. The subject of astrophysical sources

of gravitational waves is widely discussed in the literature [117, 110, 77]. We give here

a very brief survey of the “classical” sources of gravitational waves—namely, supernovæ

coalescing binaries, pulsars and stochastic background—and the suitability of spherical

resonant antennæ to detect them.

6.3.1 Supernovæ

It is generally accepted that the most intense gravitational waves reaching the Earth

must come from dynamic deformed systems near their gravitational radius. Perhaps

the most favourable source is a star collapsing across its gravitational radius in a highly

non–spherical process.

Such kind of source involves a considerable mass compressed to very high density

in a very short timescale. In particular, the usual assumption about supernovæ is that

they produce a burst of radiation in a timescale characteristic of the bounce, of the order

of 1 millisecond. This would result in a burst at about 1 kHz. It is possible, however,

that considerable radiation from a collapse event emerges at a frequency below 1 kHz, if

rotation is involved. In fact rotational effects slow down the collapse and thereby lower

the dominant frequency at which the radiation comes out. The radiation amplitude

produced in a galaxy a distance r from the Earth by a collapse in which an energy E is

converted into gravitational radiation in a time τ , can be estimated as [111]

h = 1.4 × 10−21

(

E

10−2M⊙c2

)1/2
( ν

1 kHz

)−1 ( τ

1 ms

)−1/2
(

r

15 Mpc

)−1

(6.6)

Assuming that the duration of the burst is the timescale of the rebound, i.e., about one

millisecond, and that the strongest possible burst would emit the entire binding energy of

a neutron star, around 0.1M⊙c
2, then this event would produce an amplitude of 3×10−18

if it ocurred in our Galaxy, and 3×10−21 if in the Virgo cluster. A more moderate and

plausible event, converting to gravitational radiaton 0.01M⊙c
2, would give an amplitude

of about 8×10−22 at 20 Mpc. The expected rate of these events is several per month.

We refer the reader to our previous discussion of the burst sensitivity of solid and

hollow spheres in chapter 5, which show that they would be within the threshold set by

the above theoretical estimates.
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6.3.2 Coalescing binaries

Binary star systems, whose components are neutron stars or black holes, have received

great theoretical attention because of the existence of of PSR 1913+16 [115] and because

a large fraction of stars are in close binary systems. Since very recently, the almost

exclusive interest in this source has been connected with projected large interferometers,

for resonant detectors had insufficient sensitivity to detect them. Recent theoretical

research by E. Coccia and V. Fafone [26] shows, however, that solid spherical antennæ

monitored at their first two quadrupole modes can be advantageously used to detect

signals from binary systems, and to determine some of the parameters characterizing

it. Let us briefly review this issue, and show how hollow spherical detectors enter the

picture.

The waveform of the gravitational radiation emitted by a binary system in the New-

tonian regime—usually called chirp— is a sinusoidal with time–increasing frequency and

amplitude. The time–dependent frequency of the gravitational wave is given by [94]

ωg(t) = 2

(

256

5

G5/3

c5

)−3/8

M−5/8
c (tc − t)−3/8, (6.7)

where tc denotes the time at which coalescence is expected, and Mc is the chirp mass,

which is related to the two stars’ masses, m1 and m2 through the equation

Mc ≡ (m1m2)
3/5(m1 +m2)

−1/5. (6.8)

The ‘plus’ and ‘cross’ amplitudes of the chirp are then,

h+,×(t) = A+,×(t) sin

∫ t

ωg(t
′) dt′, (6.9)

where

A+(t) =
1

2r

(

5G5

c11

)1/4

M5/4
c (tc − t)−1/4(1 + cos2 ı) (6.10)

A×(t) =
1

r

(

5G5

c11

)1/4

M5/4
c (tc − t)−1/4 cos ı, (6.11)

ı being the angle of inclination of the orbit to the line of sight and r the source distance.

Figure 6.1 shows a typical chirp waveform.

The above formulæ are not valid when we are close to tc. We must restric ourselves

to frequencies over the five–cycle limit

ω5c = 2π(1525Hz)(M⊙/Mc), (6.12)
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Figure 6.1. Typical chirp waveform.

which is the frequency of the inspiralling motion when there are less than five cycles

remaining to coalescence.

The idea of Coccia and Fafone is as follows. If the chirp is detected at time t1 with

frequency ω1 equal to the first quadrupole mode of the sphere, and at time t2 with

frequency ω2 (second sphere quadrupole mode), then we can easily determine the chirp

mass with the aid of equation (6.7). As this equation has a range of validity given

by (6.12), the measurable chirp masses are limitted by the condition ω1,2 ≥ ω5c. For

instance, a 3m–diameter solid sphere has an upper chirp mass limit around one solar

mass. Hollow spherical detectors working at lower figures for ω1,2 would push upward

this upper limit. Moreover, as the stars spend more time at lower frequencies, the signal

monitoring would be easier for the hollow sphere than for the solid detector.

Work on this issue in collaboration with Coccia and Fafone is currently underway.

6.3.3 Pulsars

Rotating stars presenting deviations from symmetry around its rotation axis would

emit gravitational radiation at several frequencies. Such deviations could arise from a

number of causes. Namely, deformations owing to the star’s past history—e.g., non–
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symmetric collapse—; distortions induced by the star’s internal magnetic field; or differ-

ential rotation inducing hydrodinamical waves in the star. However, at present there is

no observational evidence in any known pulsar for sufficient non–axisymmetry to produce

potentially measurable gravitational radiation.

Waves coming from pulsars would be emitted at twice their rotation frequency, so that

resonant antennæ can only detect millisecond pulsars. This also limits the potentially

observable sources. Again, the lower resonance frequency of a hollow sphere will widen the

possibilities of detection, for the number of pulsars expected rotating at lower frequencies

is larger.

6.3.4 Stochastic background

An isotropic stochastic background of gravitational radiation is expected to bath the

Earth. It would be the outcome of a number of causes—binary stars in the low frequency

range, Population III stars, relic gravitational waves from string cosmology and phase

transitions associated with quantum cromodynamics interactions and with electroweak

interactions [117].

As the waves are stochastic, a single detector cannot differentiate them from noise.

Therefore, correlation between the outputs of at least two detectors is needed [90]. To

get a good correlation, detectors should be as close together as possible, so that they

respond to the same random gravitational waves at the same time. Therefore, the use of

two different types of antenna to perform the correlation will help to avoid spurious local

noise correlations between the detectors. Coincidence experiments between interferome-

ters and resonant bars have recently recieved theoretical attention [8, 118, 20]. As two

different detectors can only respond to the background in a correlated way if they look

at signals in the same bandwith, the broadband interferometer data must be filtered to

resonant antenna’s bandwidth before performing a cross–correlation search for stochastic

background.

The use of spherical detectors in coincidence experiments will ease the aligment of

the two antennæ and offer the possibility of cross–correlation search at lower frequencies,

where the interferometer’s sensitivity is better.



138 Chapter 6. Gravitational wave astronomy



Conclusions

We close this work with a brief summary of its main results, and a few words on

possible extensions.

Its main objective has been the study of some fundamental aspects of the performance

of spherical gravitational wave detectors from a theoretical point of view. In other words,

we have addressed the question of how realistic rigid bodies interact with gravitational

radiation, assuming the latter is correctly described by General Relativity.

A list of our main contributions follows.

• We have obtained the General Relativity equations of elasticity and viscoelasticity

in a normal reference frame, and argued that these are the suitable ones to describe

laboratory observations. We have also produced concrete equations of motion for

a solid elastic or viscoelastic detector.

• We present a thorough, exact analysis of free sphere’s normal modes of vibration,

with unprecedentedly complete tables.

• The analysis has been extended to encompass general spherically symmetric bodies.

Normal modes of vibration of hollow spheres are fully described for arbitrary ratios

of inner to outer radii.

• We have addressed and solved the perturbative analysis of small deviations from

spherical symmetry and/or homogeneity.

• The pertubative formulation is applied to the threefold splitting of the sphere’s first

quadrupole mode ensuing from its suspension in the terrestrial gravitational field.

• A thorough and complete analysis of the quasi—normal modes of vibration of

Kelvin–Voigt, Maxwell and Standard Linear viscoelastic solids is given. Closed
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expressions for their bandwith, as a function of frequency and the parameters en-

tering the model, open the possibility of experimental fitting of the models. Possible

generalizations are discussed.

• Analytical solutions to the equations of motion for a gravitational wave driven

Kelvin–Voigt solid are given, allowing a clarification of the coupled modes.

• A direct computation of the absorption cross–section is given. Alternative views

are reassessed and checked.

• The sensitivity of spherically symmetric detectors is studied, and new capabilities

are found:

– the solid sphere has high sensitivity also at is second quadrupole mode, giving

the possibility of two—frequency resonant detectors;

– applications of the above property to xylophone proposals are given;

– the sensitivity of hollow spheres is investigated and good performance at two

frequencies is also obtained for this new type of detectors;

– thin hollow spheres are shown to be operative at very low frequencies, consid-

ered so far unreacheable by resonant detectors.

• Detectability of classical gravitational wave sources by spherical antennæ is re-

viewed, with special emphasis in their specific capabilities.
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A.1 Normal modes: calculations

In this section we give the details of the computations yielding the transverse and

longitudinal components of normal modes of vibration given in equations (3.17), (3.18)

and (3.19), as well as the action of the operator b on these components (equations (3.23)).

Our aim is to present a derivation as compact as possible of the expressions involved.

A.1.1 Computation of sl, st and st′

When using a spherical coordinate system, it will be very helpful the following split-

ting of the nabla operator:

∇ = n
∂

∂r
− i

r
n × L (A.1)

(where the vector n ≡ x/r depends only on θ and φ), as well as the property of the

“angular momentum” differential operator L = −irn×∇ of having no component along

∂r, so that

LG(r) = 0 (G(r) arbitrary). (A.2)

The above properties make the derivation of equations (3.17) and (3.19) straightfor-

ward:

sl = ∇φlm =

(

n
∂

∂r
− i

r
n × L

)

jl(qr)Ylm(θ, φ)

=
djl(qr)

d r
Ylm n − jl(qr)

r
in× LYlm . (A.3)

st′ = iLϕlm = iLjl(kr)Ylm(θ, φ) = jl(kr) iLYlm . (A.4)
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As regards st, we have, from its definition,

st = i∇× Lϕlm = ∇× (rn ×∇ϕlm).

Using now the vector identity

∇× (A × B) = (B · ∇)A − (∇ ·A)B − (A · ∇)B + (∇ ·B)A, (A.5)

we obtain

st = −
(

2∇ + r∂r∇ + rk2n
)

ϕlm,

where use have been made of the fact the ϕ satisfies a Helmholtz equation. Introducing

the split (A.1) in the above equation, we are left with

st = −Ylm n

(

2
d

dr
+ r

d2

d r2
+ rk2

)

jl(kr) + in× LYlm

(

2 + r
d

dr

)

r−1jl(kr).

Using finally the differential equation satisfied by spherical Bessel functions

z2 d
2jl(z)

d z2
+ 2z

djl(z)

d z
+ [z2 − l(l + 1)]jl(z) = 0, (A.6)

we obtain the expression quoted in the text for st:

st = −l(l + 1)
jl(kr)

r
Ylm n +

(

jl(kr)

r
+
djl(kr)

d r

)

in× LYlm . (A.7)

A.1.2 Calculation of the boundary conditions

The action of the operator b on sl is computed immediately. As the longitudinal

solution is irrotational, we have, from the definition of b,

b[sl] = λ(∇ · sl)n + 2µ∂rsl. (A.8)

The first of equations (3.23) is obtained simply using ∇ · sl = ∇2φlm = −k2φlm in the

above expression.

On the other hand, as st′ is divergence free,

b[st′ ] = 2µ∂rst′ + n × (∇× st′). (A.9)

But, by definition, ∇× st′ = st, so that, using (A.7), we get the desired expression:

b[st′ ] = 2µ
djl(kr)

d r
iLYlm +

[

jl(kr)

r
+ µ

djl(kr)

d r

]

n × ( in× LYlm )

= −µ r d

dr

jl(kr)

r
iLYlm . (A.10)
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As regards b[st], we have an expression analogous to (A.9), in which appears a trivial

term (∂rst) and the more involved one n× (∇× st). From equation (A.7) and standard

properties of the rotational, we obtain

∇× st = −l(l+ 1)[∇(
jl(kr)

r
Ylm)] × n +

[

jl(kr)

r
+
dj(kr)

d r

]

∇× ( in× LYlm )

+
d

dr

[

jl(kr)

r
+
djl(kr)

d r

]

n× ( in × LYlm ). (A.11)

The first term of the RHM of the above equation can be computed using (A.1), resulting

the expression

[∇(r−1jl(kr)Ylm)] × n = −r−2jl(kr) iLYlm ,

while the second term in the RHM of (A.11) is calculated applying the identity (A.5):

∇× ( in× LYlm ) = ( iLYlm · ∇)n − (∇ · n) iLYlm = −r−1 iLYlm ,

where use has been made of the fact that iLYlm does not depend on r, is irrotational,

and orthogonal to n. Thus, the final expression for the rotational of st is

∇× st =

[

(l + 2)(l − 1)
jl(kr)

r2
− 2

d

dr

jl(kR)

r
− d2jl(kr)

d r2

]

iLYlm , (A.12)

and from this equation and the explicit form of st we obtain the desired result:

b[st] = 2µ∂rst + µn× (∇× st)

= −2µ l(l+ 1)
d

dr

jl(kr)

r
Ylm n + µ

[

d2

dr2
+ (l + 2)(l − 1)

1

r2

]

jl(kr) in × LYlm .

(A.13)
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B.1 Explicit form of χ1,2(r)

The explicit form of the phase functions appearing in spheroidal quasi–normal modes

of vibration for the Kelvin–Voigt solid is obtained from the expression of their spatial

part. This can be readily written down taking the corresponding equations for the normal

modes and replacing the constants k and q by their viscoelastic counterparts K and Q, as

discussed in chapter 4. Thus, referring to equation (3.29), the spatial part of spheroidal

quasi–normal modes can be written as

sP
nlm(r, θ, φ) = Anl(r)Ylm(θ, φ)n − Bnl(r) in × LYlm (θ, φ), (B.1)

where the radial functions Anl and Bnl are obtained from equations (3.30) and (3.31)

upon the aformentioned substitutions, yielding:

Anl(r) = C(n, l)

[

β3(KR)
djl(Qr)
d (Qr) − l(l+ 1)

Q
Kβ1(QR)

jl(Kr)
Kr

]

(B.2)

Bnl(r) = C(n, l)

[

β3(KR)
jl(Qr)
Qr − Q

K
β1(QR)

Kr
d

dr
{r jl(Kr)}

]

. (B.3)

Making use of the approximated expressions (4.29) for K and Q, the first order expansion

of the above radial functions shall be

Anl(r) = Anl(r) − iǫA
(1)
nl (r) Bnl(r) = Bnl(r) − iǫB

(1)
nl (r), (B.4)

where Anl(r) and Bnl(r) are the radial functions corresponding to the elastic solid, while

the corrections A
(1)
nl (r) and B

(1)
nl (r) are given by the following expressions

A
(1)
nl (r) = i

(

∂Anl

∂ γ

)

γ=wnl

γ1 B
(1)
nl (r) = i

(

∂Bnl

∂ γ

)

γ=wnl

γ1. (B.5)
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When applying the chain rule to the derivatives with respect of γ in the above equation,

the following derivatives will come into play

∂K
∂ γ

= k1 +O(ǫ)
∂Q
∂ γ

= q1 +O(ǫ), (B.6)

which, as is immediately inferred from the fact that γ1 is real (cf. (4.36)), are purely

imaginary magnitudes. As a result of this fact, the functions defined by equations (B.5)

are real, so that rewriting the radial functions (B.4) as

Anl(r) = |Anl(r)|eiχ
1
(r) Anl(r) = |Anl(r)|eiχ

2
(r) (B.7)

it is readily obtained

|Anl| = Anl(r) |Bnl| = Bnl(r) (B.8)

χ1(r) = arctan

(

−ǫA
(1)
nl (r)

Anl(r)

)

≈ −ǫA
(1)
nl (r)

Anl(r)
(B.9)

χ2(r) = arctan

(

−ǫB
(1)
nl (r)

Bnl(r)

)

≈ −ǫB
(1)
nl (r)

Bnl(r)
. (B.10)

For the sake of completeness, it must be remembered that the equations given so far are

not valid for the case of monopolar modes. When l = 0, the spatial part of quasi–normal

modes is obtained from equation (3.33), which gives the spatial part of monopolar normal

modes of vibration, after making the requisite substitutions:

sP
KV (r) = An0(r)n, (B.11)

where, now,

An0(r) = C(n, 0)
dj0(Qr)
d (Qr) = C(n, 0)

(

dj0(qn0r)

d (qn0r)
+ q1R

d2j0(qn0r)

d (qn0r)
2 ǫ

)

= An0(r)e
iχ(r),

(B.12)

and, making use of the form of q1 for monopolar modes given by equation (4.38),

χ(r) = arctan(j′′0 (qn0r)/j
′
0(qn0)ǫ) ≈ ǫ j′′0 (qn0r)/j

′
0(qn0) (B.13)

where a prime denotes derivative with respect to the argument.

As discussed in the main text, the expressions derived in this appendix happen to be

valid mutatis mutandis to all the viscoelastic models presented.
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B.2 General solution to the Kelvin–Voigt model

As shown in the main text of x5.2.2, the general solution to the equations of motion

of a driven Kelvin–Voigt solid can be written as a series in the parameter α (cf. (5.22))

whose coefficients are solutions of the non–homogeneous elastic problem

LS(n) + k2S(n) = −iL′S(n−1), TS(n)|S = −iT′S(n−1), (B.14)

where k2 ≡ ρω2µ−1 and n > 0, while the zero–order term is written as a linear superpo-

sition of the form

S(0) =
∑

N

S
(0)
N sN(x), S

(0)
N =

FN (ω)

ω2
N − ω2

,

where FN (ω) is the component of the driving force along sN , cf. (5.10).

Let us have a look at the driving terms appearing in equations (B.14) for n = 1. Due

to the fact that sN is an eigenvector of L and that

(L − L
′)ij = (h− h′)∂i∂j , (T − T

′)ij = (h− h′)ni∂j , (B.15)

the following relationships ensue:

L
′S(0) =

∑

N

S
(0)
N

[

(h′ − h)∇ (∇ · sN ) − k2
NsN

]

,

T
′S(0) = (h′ − h)

∑

N

S
(0)
N (∇ · sN )n.

Due to the linearity of the problem (B.14), it is clear that in order to find S(1) we must

simply solve the following equations

LAN + k2AN = ∇fN (x) − ik2
NsN , TAN |S = −fN(S)n, (B.16)

where fN(x) = (h′ − h)∇ · sN (x), the desired solution for n = 1 being then the linear

superposition

S(1) = −i
∑

N

S
(0)
N AN . (B.17)

Before using the Green’s operator G for solving equations (B.16), we must get rid of the

inhomogeneous boundary conditions thereof. Assuming spherical symmetry, this can be

done writting AN as the sum

AN = A′
N +

fN (S)

f ′
N (S)

s′N(x), (B.18)
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where s′N denotes an eigenfunction of L
′ satisfying Ts′N |S = 0, and f ′

N stands for (h′−h)
times its divergence. It is then straightforward to show, using the second (B.15)3, that

when applying the operator T to both sides of equation (B.18) we obtain

TAN |S = TA′
N |S − fN(S)n (B.19)

Thus, introducing the decomposition (B.18) into equations (B.16) we obtain the following

equations for A′
N :

LA′
N + k2A′

N = −BN , A′
N ∈ Hh, (B.20)

where we have introduced the vector field BN , defined as

BN (x, ω) = −∇fN(x) + k2
NsN (x) +

fN (S)

f ′
N (S)

(

Ls′N (x) + k2s′N (x)
)

.

As have been shown in x5.2.1, the solution to (B.20) can be written as

A′
N (x, ω) =

∑

L

BN
L (ω)

ω2
L − ω2

sL(x), BN
L (ω) =

µ

ρM
(sL,BN ).

Using equation (3.87) and the definition of BN , we can rewrite the coefficients BN
L in

the form

BN
L (ω) = CN

L + (ω2
L − ω2)DN

L ,

where we have introduced the constant, ω-independent coefficients

CN
L = δN

L ω
2
N+

µ

M
(h′−h)

∫

V

(∇·s∗L)(∇·sN ), , DN
L = −fN(S)

f ′
N(S)

1

M

∫

V

ρ dx s∗L(x)·s′N (x).

Therefore, the final form of AN is

AN (x, ω) =
fN(S)

f ′
N(S)

s′N (x) +
∑

L

(

CN
L

ω2
L − ω2

+DN
L

)

sL(x),

and, according to (B.18), we finally obtain the rather involved equality:

S(1)(x, ω) = −i
∑

L

[

∑

N

FN (ω)

ω2
N − ω2

(

CN
L + (ω2

L − ω2)DN
L

)

]

1

ω2
L − ω2

sL(x)

−i
∑

N

FN (ω)

ω2
N − ω2

fN (S)

f ′
N (S)

s′N (x). (B.21)

3The assumption of spherical symmetry is needed for deriving (B.19), because in this case the quotient

f/f ′ is constant on S.
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The method just described for obtaining the first-order contribution S(1) to the solution,

can be followed iteratively to obtain S(n) for any n. Nevertheless, the general expression

we would arrive at is a cumbersome expansion of nested summatories which is far from

being easy to handle. There is, however, a very interesting particular case in which these

expressions are greatly simplified; namely, the case of a driven force whose spectrum F (ω)

is peaked around a ressonant frequency ωK , being zero outside a small neighbourhood of

±ωK . Under such assumption, we must only consider equation (B.21) for |ω| ≈ ωK . For

such values of ω, we can drop all terms except the dominant quadratic one in (ω2
N−ω2)−1,

obtaining

S(1)(x, ω) ≈ −i CK
K

(ω2
K − ω2)2

∑

m

Fmsm(x),

where the summation extends over the eigenvectors having the same (degenerated) eigen-

frequency ωK . The above equation is easily generalized for any value of n:

S(n)(x, ω) ≈
( −iCK

K

ω2
K − ω2

)n
1

ω2
K − ω2

∑

m

Fm(ω)sm(x),

which is formula (5.25) used in the main text.
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Appendix C

Part of the work described in the main text relies on numerical calculations. These

calculations have been performed with the aid of an HP Workstation of the Apollo series,

which ran some routines in the C programming language [70] written specifically for

the problem at hand. Although none of the computations required heavy numerical

analysis, we ended up with a small library of functions, which has proved useful and handy

thorough our work on spherical gravitational wave detectors, and which is described in

this Appendix.

All the routines are written according to the Standard ANSI C conventions [70], so

that they can be compiled and used on any plataform or operative system. In the first

section we give a list of the functions developed and a description of their performance.

The second section is devoted to the presentation of the algorithms through their listings

in C.

C.1 The library sphere

Any programme using this library must be linked with the compiled version of the

listings in the next section, as well as include the header file sphere.h, containing the

prototypes of our functions. This header is the following:

/** header sphere.h **/

#ifndef __sphere__

#define __sphere__

#include <math.h>
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/** Function prototypes for the library **/

void beta(int l, double z, double* bet, double* tbet,

double* dbet, double* dtbet, double eta , double pr);

void matrixP(int l ,double z,double* Ap, double eta, double pr);

void matrixT(int l, double z,double* At, double eta);

double rootP(int l, int n, double eta, double pr);

double rootT(int l, int n, double eta);

double rootivP(int l, double iv, double eta, double pr);

double rootivT(int l, double iv, double eta);

void weightsP(int l, int n, double* p, double eta , double pr);

void radP(int l, int n, double z, double* A, double* B,

double eta, double pr);

void dradP(int l, int n, double z, double* dA, double* dB,

double eta, double pr);

void radT(int l, int n, double z, double* T, double* dT,

double eta);

double normP(int l, int n, double eta, double pr);

double normT(int l, int n, double eta);

double cross(int n, double eta, double pr);

/** Auxiliar functions **/

void sphbes(int ,double ,double*, double*, double*, double*);

double deter(double*, int);

double rtbis(double (*func)(double), double, double);

void gauleg(double, double, double *,double *,int);

void triangular(double*, int, int, int*);

void error(char*);

#endif

The routines termed Auxiliar functions are used by the rest of the library. They

perform general purpose tasks. We shall give here a description of each especific function,

avoiding technical details of their implementation, which are left for the next section. In
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the descriptions hereafter, the following arguments have always the same meaning:

int l Integer denoting the multipole index l. It can take any non-negative value.

int n Integer denoting the index n of normal modes. It can take any positive value.

double eta Double–precision variable giving the value of η = a/R, i.e., the ratio be-

tween the inner and outer radii of the hollow sphere. It ranges from 0 to 1.

double pr Value of the material’s Poisson’s ratio. It must be in the interval [−1, 0.5].

Functions of the library

• void beta(int l, double z, double *bet, double *tbet,

double *dbet, double *dtbet, double eta, double pr)

This function computes the functions β and β̃, given by equations (3.25) and (3.56),

at the point z. The result is stored in the five-dimensional arrays pointed by bet

and tbet according to the following formulæ:

bet[n] = βn(z) tbet[n] = β̃n(z)

bet[0] = z−2jl(z) tbet[0] = z−2yl(z)

When eta=1 (thin shell limit), the derivatives of the above functions are also

computed and stored in the five–dimensional arrays pointed by dbet and dtbet.

Otherwise, as they are not used in the calculations when η < 1, these pointers are

reset to NULL.

• void matrixP(int l, double z, double *A, double eta, double pr)

This function computes the matrix AP given in (3.54), and stored it, sorted by

arrows, in the sixteen-dimensional array pointed by A, according to the following

relations:

A[(i-1)*4+j-1]= (AP )ij ,

valid when 0 < η < 1 and l 6= 0. The limiting cases are treated as follows:

– 0 < η < 1, l = 0

In this case, the relevant matrix is the 2× 2 one appearing in (3.61). Thus, A
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is assumed to point to a four-dimensional array in which the matrix is stored:

A[0] = β4(zq/k) A[1] = β̃4(zq/k)

A[2] = β4(ηzq/k) A[3] = β̃4(ηzq/k).

– η = 0, l 6= 0

For the solid sphere, the matrix whose determinant vanishes is again 2 × 2,

and is given by equation (3.27). It is stored rowwise in A:

A[0] = β4(zq/k) A[1] = −l(l+ 1)β1(z)

A[2] = −β1(zq/k) A[3] = β3(z)

– η = 0, l = 0

The monopolar modes of the solid sphere satisfy equation (3.34). A is assumed

again four-dimensional, and the following values are stored in it:

A[0] = β4(zq/k) A[1] = A[2] = 0 A[3] = 1.

– η = 1

In the thin shell limit, the corresponding matrix is AP (or the 2×2 matrix ap-

pearing in the monopolar case) with the functions taking values at zη replaced

by their derivatives taken at z.

The values stored in A are such that the eigenvalue equation is always det(A) = 0,

and A is considered a function of z = kR.

• void matrixT(int l, double z, double *A, double eta)

This function stores in A the matrix AT (cf. (3.55)), corresponding to toroidal

modes:

A[(i-1)*2+j-1]= (AT )ij .

In the case of the solid sphere (η = 0), the toroidal eigenvalue equation is (3.40),

so that the values stored by matrixT in A are:

A[0] = β1(z) A[1]=A[2] = 0 A[3] = 1.

The thin shell limit in the toroidal family can be solved analytically, so that no

numerical calculations are needed for η = 1.

This function cannot be called for l = 0 (there are no monopolar modes in the

toroidal family).
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• weightsP(int l, int n, double *p, double eta, double pr)

This function calculates, for the spheroidal normal mode (n, l), the coefficients

defined in equation (3.67) and stores them in the 3–dimensional array pointed by

p:

p[0] = Ctl p[1] = Dll p[2] = Dtl.

When eta=1, the quotient Ctq/Clk is stored in p[0].

• void radP(int l, int n, double z, double *A, double *B,

double eta, double pr)

This function evaluates the radial functions Anl(r) and Bnl(r), given by equations

(3.69) and (3.70), at r/R = z(1-eta)+eta and taking C(n, l) = 1/β3(k
P
nlR). Their

values are stored in the variables pointed by A and B. In the case of a solid sphere,

equations (3.30) and (3.31) are used. The variable z can take values within the

interval [0, 1].

• void dradP(int l, int n, double z, double *dA, double *dB,

double eta, double pr)

This function stores in dA and dB the derivatives dAnl/d(kr) and dBnl/d(kr) at

r/R = z(1-eta)+eta.

• void radT(int l, int n, double z, double *T, double *dT, double eta)

The functions Tnl(r) for the solid (equation (3.44)) and hollow (equation (3.81))

sphere are calculated, as well as its derivative. Their values are stored in the

variables pointed by T and dT, and z has the same meaning as in radP.

• double normP(int l, int n, double eta, double pr)

double normT(int l, int n, double eta)

These functions return values which are proportional, respectively, to the normal-

ization constants C(n, l) and C′(n, l), when the normalization conditions (3.74) and

(3.83) are imposed. In fact, they perform the numerical integration. Thus, if

x = normP(l,n,eta,pr)

y = normT(l,n,eta),

the following relations hold

C(n, l) = xβ3(k
P
nlR)

√

4π(kP
nlR)3(1 − η3)/3
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C′(n, l) = y
√

4π(kT
nlR)3(1 − η3)/3.

• double rootP(int l, int n, double eta, double pr)

double rootT(int l, int n, double eta)

These functions return, respectively, the eigenvalues kP
nlR and kT

nlR.

• double rootivP(int l, double iv, double eta, double pr)

double rootivT(int l, double iv, double eta)

These functions return the first spheroidal and toroidal eigenvalue greater than the

value of iv.

• double cross(int n, double eta, double pr)

This function returns the value (as
nk

P
2n)2 when pr=0 and (ah

nk
P
2n)2 otherwise. These

values determine, up to a multiplicative constant, the absorption cross–sections of

spherical detectors (cf. chapter 5)

C.2 Source code of the library

C.2.1 Auxiliar functions

The routines described in the previous section make use of some auxiliar functions,

whose listings are given below: rtbis (a root finder using the method of bisection),

deter, gauss, triangular (computation of determinants and solution of linear systems),

gauleg (quadratures using Gauss–Legendre interpolation) and sphbes (spherical Bessel

functions and their derivatives). They are general purpose routines based on well-known

numerical algorithms [32, 101]. Thus, rtbis and gauleg are almost identical to those

found in [101], and we give their listings just for the sake of completeness. On the

other hand, although deter,gauss, triangular and sphbes use standard algorithms and

source code for them can be found in the literature, we have prefered writting the code

ourselves. As the calculations involved are not exceedingly time or memory demanding,

our aim has been to provide programmes which were simple rather than computationally

optimized.

• rtbis

This routine uses the usual bisection method [101] for searching a root of the

function pointed by func in the interval x1<x<x2. The macro NMAX gives the
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maximum number of bisections allowed to attain a precision in the value returned

of one part in 1e(-PREC).

The source code of this function is the following:

#define NMAX 100

#define PREC 1e-10

double rtbis(double (*func)(double),double x1,double x2)

{

int j;

double dx,f,fmid,xmid,rtb;

f=(*func)(x1);

fmid=(*func)(x2);

if (f*fmid >= 0.0)

error("rtbis: root must be bracketed for bisection");

rtb = f < 0.0 ? (dx=x2-x1,x1) : (dx=x1-x2,x2);

for (j=1;j<=NMAX;j++) {

fmid=(*func)(xmid=rtb+(dx *= 0.5));

if (fmid <= 0.0) rtb=xmid;

if (fabs(dx) < PREC || fmid == 0.0) return rtb;

}

error("rtbis: NMAX exceeded");

return 0.0;

}

#undefine NMAX

#undefine PREC

This and the following routines make use of a simple error handler:
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void error(char *s)

{

fprintf(stderr,"\nError:%s\n",s);

exit(1);

}

• gauleg

This routine stores in x and w the points and weights used in the Gaussian quadra-

ture approximation [32, 101]

∫ b

a

f(x) dx ≈
n−1
∑

i=0

wif(xi),

where the points are the zeros of the Legendre polynomial Pn(x) considered in the

interval (a, b), and the weights are given by

wi = 2(1 − x2
i )

−1[P ′
n(xi)]

−2.

The source code [101] is the following:

#define PREC 1e-10

void gauleg(double x1, double x2, double x[], double w[], int n)

{

int m,j,i;

double z1,z,xm,xl,pp,p3,p2,p1;

m=(n+1)/2;

xm=0.5*(x2+x1);

xl=0.5*(x2-x1);

for (i=1;i<=m;i++) {

/* calculus of the zero by Newton’s method */

z=cos(3.141592654*(i-0.25)/(n+0.5));

do {
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/* computation of the polynomial by recurrence*/

p1=1.0;

p2=0.0;

for (j=1;j<=n;j++) {

p3=p2;

p2=p1;

p1=((2.0*j-1.0)*z*p2-(j-1.0)*p3)/j;

}

/* derivative of the polynomial */

pp=n*(z*p1-p2)/(z*z-1.0);

/* Newton’s method */

z1=z;

z=z1-p1/pp;

} while (fabs(z-z1) > PREC;

x[i]=xm-xl*z;

x[n+1-i]=xm+xl*z;

w[i]=2.0*xl/((1.0-z*z)*pp*pp);

w[n+1-i]=w[i];

}

}

#undefine PREC

• triangulation

This routine transforms the matrix stored rowwise in the address pointed by d into

its upper-triangular equivalent by Gaussian elimination (if n < m, the programme

makes upper-triangular the embedded n × n matrix). Thus, if, say, aij is the nxm

matrix to be stored, the routine expects that the following equality holds:

a[i*(m-1)+j-1]= aij , (C.1)

and, after its action, the equivalent matrix stored in a will satisfy

aij = 0 if i, j < n.

The programme uses the method of partial pivoting (see, e.g., [32] chapter 5),

which may also imply changes in the original order of the rows. The parity of these

permutations is stored in the address pointed by par.
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void triangular(double *d,int n, int m, int *par)

{

double akk,x;

int i,j,k;

*par=1;

for (k=0;k<n;k++)

{

/* choosing the pivot */

akk=d[k*m+k]; j=k;

for (i=k;i<n-1;i++)

if (akk<d[i*m+k]) {akk=d[i*m+k]; j=i;}

if (akk==0) continue;

/* interchanging rows if necessary */

if (j!=k)

{

for(i=k;i<m;i++)

{ x=d[k*m+i]; d[k*m+i]=d[j*m+i]; d[j*m+i]=x;}

*par*=-1;/* change of parity */

}

/* pivoting */

for (i=k+1;i<n;i++)

for (j=k+1; j<m; j++)

d[i*m+j]-=d[i*m+k]*d[k*m+j]/akk;

for (i=0; i<k; i++)

for (j=k+1;j<n;j++)

d[j*m+i]=0;

}

}

• deter
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This routine returns the determinant of an nxn matrix stored rowwise (cf. (C.1))

in the address pointed by d.

The routine constructs a triangular matrix by the aid triangular, and then com-

putes its determinant multiplying the diagonal components of the new matrix.

The source code of deter is the following:

double deter(double *d,int n)

{

double det=1, *a;

int k,par;

if (n==2) return d[0]*d[3]-d[1]*d[2];

if ((a=malloc(n*n*sizeof(double)))==NULL)

error("deter: memory allocation.");

for (k=0;k<n*n;k++) a[k]=d[k];

triangular(a,n,n,&par);

for (k=0;k<n;k++) det*=a[k*n+k];

free(a);

return par*det;

}

• gauss

This routine solves the linear system A · X = B, where A is a nxn matrix stored

in the address a and B is an n-dimensional vector stored in the address b. The

solution X is stored in b. The routine reduces the system to its triangular form

and then uses the well–known algorithm of back substitution (cf. [32], chapter 5)

to solve it. The source code is given below.
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void gauss(double *a, double *b, int n)

{

double *d;

int i,j;

if ((d=malloc(n*(n+1)*sizeof(double)))==NULL)

error("gauss: memory allocation error");

/* making up an nx(n+1) matrix */

for (i=0; i<n; i++) {

d[i*(n+1)+n]=b[i];

for (j=0;j<n;j++) d[i*(n+1)+j]=a[i*n+j]; }

triangular(d,n,n+1,&i);

/* back substitution on a triangular matrix */

for (i=n-1;i>-1;i--){

b[i]=d[i*(n+1)+n];

for(j=i+1;j<n;j++) b[i]-=d[i*(n+1)+j]*b[j];

b[i]/=d[i*(n+1)+i];}

free(d);

}

• sphbes

The function sphbes computes spherical Bessel functions of the first and second

kind, and their derivatives, at the point z, and stores them in the variables pointed

by j, y, dj, dy (see listing below).

This routine computes spherical Bessel functions of the second kind with the use

of the recurrence relations [2]

yl(z) = (2l − 1)z−1yl−1(z) − yl−2(z), (C.2)

by forward iteration starting with y0(z) and y1(z). This method is hampered by

numerical instability when applied to spherical Bessel functions of the first kind.
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To compute them recursively we use a method due to J.C. Miller [92]. It makes

use of the backwards recursive formula

jl−2(z) = (2l − 1)z−1jl−1(z) − jl(z), (C.3)

starting from some L > l and the tentative values ̃L(z) = 0, ̃L−1(z) = 1. Using

these values and the above recursive relation, we obtain a series of values ̃L−2 . . . ̃0.

The true value of jl(z) is then given by

jl(z) = ̃l
j0(z)

̃0
, (C.4)

due to the fact that different solutions to second order difference equations are

proportional to each other [32].

The derivative of spherical Bessel functions is computed using the recurrence rela-

tion [2]

h′l(z) = hl−1(z) − (l + 1)z−1hl(z), (C.5)

which is valid for hl = jl, yl.

The chosen value for L is 50+(int)z, which has been proved to give correct values

for, at least, ten decimal places when z ≤ 100 and l ≤ 10.

The code for sphbes is thus the following:

void sphbes(int l, double z, double *j, double *y,

double *dj, double *dy)

{

int sbj(int,double,double*,double*);

int sby(int,double,double*,double*);

if (sbj(l,z,j,dj)) printf("\nWarning: bad arguments in sbj\n");

if (sby(l,z,y,dy)) printf("\nWarning: bad arguments in sby\n");

}

/* spherical bessel functions of the first kind */

int sbj(int l, double x, double *j, double *dj)

{
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int k;

double fl, fl_1, fk_1, fk=1, fk1=0;

if ( x<0 || l<0) return 1; /* bad arguments: returns 1 */

if (x==0) { *j=(l==0 ? 1:0); *dj=0; return 0; }

*j=sin(x)/x;

if (l==0) { *dj=-*j/x+cos(x)/x; return 0;}

/* backward recurrence */

for (k=50+(int) x; k>0; k--) {

fk_1=(2*k+1)*fk/x-fk1;

if (k==l) { fl=fk; fl_1=fk_1;}

fk1=fk; fk=fk_1;

}

fl/=fk; fl_1/=fk;

*dj=*j*fl_1-(l+1)*fl*(*j)/x;

*j*=fl;

return 0;

}

/* spherical Bessel functions of the second kind */

int sby(int l, double x, double *y, double *dy)

{

int k;

double sy0, sy1,yk;

if ( x<=0 || l<0 ) return 1; /* bad arguments: return 1 */

sy0=-cos(x)/x;

if (l==0) { *y=sy0; *dy=sin(x)/x+cos(x)/(x*x); return 0; }

sy1=-sin(x)/x-cos(x)/(x*x);

if (l==1) { *y=sy1; *dy=-2*sy1/x+sy0; return 0;}
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/*forward recurrence */

for (k=2; k<l; k++){

yk=(2*k-1)*sy1/x-sy0;

sy0=sy1; sy1=yk;

} /* sy1=bessel of order l-1 */

*y=(2*l-1)*sy1/x-sy0;

*dy=sy1-(l+1)*(*y)/x;

return 0;

}

C.2.2 Specific functions

In this subsection we give the listings and technical details of the routines specifically

programmed to deal with functions and magnitudes appearing in the theory of spherical

detectors of gravitational radiaton.

• beta

The expressions used in this routine to compute the functions β and β̃, as well as

their derivatives, are easily obtained from their definitions (equations (3.25) and

(3.56)) and recurrence relations (C.2) and (C.4).

The source code for this routine is thus self–explanatory:

void beta(int l, double x, double *b, double *bb,double *db,double *dbb,

double eta, double pr)

{

double j,y,dj,dy,H;

if ( (x<=0)||(l<0)||(pr>0.5)||(pr<-1) )

error("betaP:bad arguments");

/* computing the value of H=lambda/mu from pr */
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H=2*pr/(1-2*pr);

sphbes(l,x,&j,&y,&dj,&dy);

b[0]=j/(x*x); bb[0]=y/(x*x);

b[1]=dj/x-j/(x*x); bb[1]=dy/x-y/(x*x);

b[2]=l*b[1]-j*(1-l*(l+2)/(x*x))-dj*(l+2)/x;

bb[2]=l*bb[1]-y*(1-l*(l+2)/(x*x))-dy*(l+2)/x;

b[3]=0.5*b[2]+(0.5*l*(l+1)-1)*b[0];

bb[3]=0.5*bb[2]+(0.5*l*(l+1)-1)*bb[0];

b[4]=b[2]-H*0.5*j;

bb[4]=bb[2]-H*0.5*y;

/* spherical shell limit: the derivatives of the

beta functions will be needed. */

if (eta>0.99999)

{

db[0]=(b[1]-b[0])/x; dbb[0]=(bb[1]-bb[0])/x;

db[1]=(b[2]-2*b[1])/x;

dbb[1]=(bb[2]-2*bb[1])/x;

db[2]=l*db[1]-dj+l*(l+2)*db[0]-(l+2)*(b[2]-dj/x)/x;

dbb[2]=l*dbb[1]-dy+l*(l+2)*dbb[0]

-(l+2)*(bb[2]-dy/x)/x;

db[3]=0.5*db[2]+(0.5*l*(l+1)-1)*db[0];

dbb[3]=0.5*dbb[2]+(0.5*l*(l+1)-1)*dbb[0];

db[4]=db[2]-H*0.5*dj;

dbb[4]=dbb[2]-H*0.5*dy;

}

else db=dbb=NULL;

}

• matrixP and matrixT
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These routines calculate the matrices AP and AT according to the prescriptions

given in section C.1. Once the functions β and β̃ have been provided, the code is

merely a translation in C of the correspondig formulæ for the members of these

matrices.

/** matrixP **/

void matrixP(int l,double x,double *a, double eta, double pr)

{

double b[5],bb[5],db[5],dbb[5],y,S;

int s,t;

if ((pr<-1)||(pr>0.5)) error("matrixP: pr out of bounds");

if ((eta<0)||(eta>1)) error("matrixP: eta out of bounds");

/* Computation of S=k/q from pr */

S=sqrt((2-2*pr)/(1-2*pr));

if (eta==0)

{

beta(l,x/S,b,bb,db,dbb,0,pr);

if (l==0) { a[0]=b[4]; a[3]=a[1]=1; a[2]=0; return;}

a[0]=b[4]; a[2]=-b[1];

beta(l,x,b,bb,db,dbb,0,pr);

a[1]=-l*(l+1)*b[1]*S; a[3]=b[3]*S);

return;

}

y=x/S;

beta(l,y,b,bb,db,dbb,eta,pr);

if (l==0) { a[0]=b[4]; a[1]=bb[4];

beta(l,eta*y,b,bb,db,dbb,eta,pr);

if (eta>0.999) { a[2]=S*db[4]; a[3]=S*dbb[4]; return;}

a[2]=b[4]; a[3]=bb[4];

return;
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}

a[0]=b[4]; a[2]=bb[4];

a[4]=-b[1]; a[6]=-bb[1];

if (eta>0.99999) /* eta=1 -> spherical shell approximation */

{

a[8]=db[4]; a[10]=dbb[4];

a[12]=-db[1]; a[14]=-dbb[1];

}

else

{

beta(l,eta*y,b,bb,db,dbb,eta,pr);

a[8]=b[4]; a[10]=bb[4];

a[12]=-b[1]; a[14]=-bb[1];

}

beta(l,x,b,bb,db,dbb,eta,pr);

t=l*(l+1);

a[1]=-t*b[1]*S; a[3]=-t*bb[1]*S;

a[5]=b[3]*S; a[7]=bb[3]*S;

if (eta>0.99999)

{

a[9]=-t*db[1]*S; a[11]=-t*dbb[1]*S;

a[13]=db[3]*S; a[15]=dbb[3]*S;

}

else

{

beta(l,eta*x,b,bb,db,dbb,eta,pr);

a[9]=-t*b[1]*S; a[11]=-t*bb[1]*S;

a[13]=b[3]*S; a[15]=bb[3]*S;

}

}

/** matrixT **/

void matrixT(int l, double x, double *a, double eta)

{

double b[5],bb[5],db[5],dbb[5];

if (l==0) error("matrixT: there are no toroidal modes for l=0");
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if ((eta<0)||(eta>1)) error("matrixT: eta out of bounds");

beta(l,x,b,bb,db,dbb,eta,0);

if (eta==0) { a[0]=b[1]; a[1]=a[3]=1; a[2]=0; return;}

a[0]=b[1]; a[1]=bb[1];

if (eta>.999) { a[2]=db[1]; a[3]=dbb[1]; return; }

beta(l,x*eta,b,bb,db,dbb,eta,0);

a[2]=b[1]; a[3]=bb[1];

}

• rootP, rootivP, rootT and rootivP

These are root finders for spheroidal and toroidal modes. They use the function

rtbis described in the previous subsection, and the auxiliar functions cf and tf,

which return the determinants vanishing when their argument is the desired eigen-

value. While rootP and rootT look for the nth mode with multipole index l, their

“iv” counterparts find the first eigenvalue greater than vi for the given l.

The code is thus the following:

double cf(double); /* auxiliar functions */

double tf(double);

static double L, R, PR; /* parameters for cf and tf */

/* spheroidal finders */

double rootP(int l, int n, double eta, double pr)

{

double x1,vi,kR,x0=0.5,h=0.1;

int m;

if ((n<1)||(l<0)||(eta<0)||(eta>1)||(pr<-1)||(pr>0.5))

error("rootP: bad arguments");
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L=l; R=eta; PR=pr; /* parameters of cf */

for (m=0; m<n;m++,x0=kR+h)

{

x1=x0; vi=cf(x0);

while((cf(x1+=h)* vi>0)&&(x1<x0*151));

if (x1>x0*151)

{ fprintf(stderr,"\nrootP: cannot find next root\n");

return x1; }

kR=rtbis(cf,x0,x1);

}

return kR;

}

double rootivP(int l, double vi, double eta, double pr)

{

double x1,kR,val,h=0.1;

if ((n<1)||(l<0)||(eta<0)||(eta>1)||(pr<-1)||(pr>0.5))

error("rootP: bad arguments");

L=l; R=eta; PR=pr;

x1=vi; val=cf(vi);

while((cf(x1+=h)*val>0)&&(x1<vi*151));

if (x1>vi*151)

{ fprintf(stderr,"\nrootivP: cannot find next root\n");

return x1; }

kR=rtbis(cf,vi,x1);

return kR;

}

/* cf(x): function which must vanish when
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x is a spheroidal root */

double cf(double x)

{

double m[16],y;

int n;

if ((R==0)||(L==0)) n=2; else n=4;

matrixP(L,x,m,R,PR);

return deter(m,n);

}

/* toroidal finders */

double rootT(int l, int n, double eta)

{

double x1,vi,kR,x0=0.5,h=0.1;

int m;

if ((n<1)||(l<1)||(eta<0)||(eta>1))

error("rootP: bad arguments");

L=l; R=eta; /* parameters of tf */

for (m=0; m<n; m++, x0=kR+h)

{

vi=tf(x0); x1=x0;

while((tf(x1+=h)* vi>0)&&(x1<151*x0));

if (x1>151*x0)

{ fprintf(stdout,"\nrootT: cannot find next root\n");

return x1; }

kR=rtbis(tf,x0,x1);
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}

return kR;

}

double rootivT(int l, double vi, double eta)

{

double x1,kR,val,h=0.1;

if ((n<1)||(l<1)||(eta<0)||(eta>1))

error("rootP: bad arguments");

L=l; R=eta;

x1=vi; val=tf(vi);

while((tf(x1+=h)*val>0)&&(x1<vi*151));

if (x1>vi*151)

{ fprintf(stdout,"\n rootivT: cannot find next root\n");

return x1; }

kR=rtbis(tf,vi,x1);

return kR;

}

/* tf(x): function that must vanish when x

is a toroidal eigenvalue */

double tf(double x)

{

double m[4], y;

matrixT(L,x,m,R);

return deter(m,2);

}
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• weightsP

The resolution of the indeterminated system with matrix of coefficients matrixP,

taking as independent terms its first row, is carried out by this routine with the

aid of rtbis and gauss (see preceeding subsection).

void weightsP(int l, int n, double *p,double eta, double pr)

{

double a[16],d[9],kR;

int i,j;

kR=rootP(l,n,eta,pr);

matrixP(l,kR,a,eta,pr);

/* especial cases */

if (l==0) { p[0]=p[2]=0; p[1]=-a[0]/a[1]; return;}

if (eta==0) { p[0]=-a[0]/a[1]; p[1]=p[2]=0; return; }

/* general case */

/* matrix of the system */

for (i=0;i<3;i++)

for(j=0;j<3;j++)

d[3*i+j]=a[4*i+j+1];

/* vector of independent terms= coeficients of C_l */

for (i=0;i<3;i++) p[i]=-a[4*i];

/* solving the system and storing the result in p */

gauss(d,p,3);
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}

• radP, radT and dradP

The following code computes the radial functions of spheroidal as well as toroidal

normal modes from their definitions. The arbitrary normalization factor is chosen

here as C(n, l) = 1/β3(k
P
nlR. It must be remembered that the argument x always

runs from 0 to 1. The routine translates this value into the interval [ka, kR] in which

the functions are defined, according to the transformation x → kR[η + x(1 − η)].

As the functions which use these routines do not admit the value kr = 0, this point

(which is only present in the case of a solid sphere) is treated especifically in an if

statement.

void radT(int l, int n, double x, double *t, double *dt, double eta)

{

double j,y,dj,dy,b[5],bb[5],db[5],dbb[5],p=0,kR;

if (l==0) error("radT: there are no toroidal modes for l=0.");

if ((l<0)||(n<1)||(eta<0)||(eta>1)||(x<0)||(x>1))

error("radT: bad arguments.");

kR=rootT(l,n,eta);

x=kR*(eta+x*(1-eta)); /* transformation from [0,1] to [kR*eta,kR] */

sphbes(l,x,&j,&y,&dj,&dy);

if (eta!=0) { beta(l,kR,b,bb,db,dbb,0,0); p=b[1]/bb[1];}

*t=j-p*y;

*dt=dj-p*dy;

}

void radP(int l, int n, double x, double *A, double *B,
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double eta, double pr)

{

double j,y,dj,dy,jq,yq,djq,dyq,p[3],S,kR;

if ((l<0)||(n<1)||(eta<0)||(eta>1)||(x<0)||(x>1))

error("radP: bad arguments.");

kR=rootP(l,n,eta,pr);

S=sqrt((1-2*pr)/(2-2*pr)); /* S=q/k */

if ((x==0)&&(eta==0))

{ if (l==1) { weightsP(l,n,p,0,pr);

*A=*B=(1-2*p[0]*S/3)/3.; }

else *A=*B=0;

return;

}

x=kR*(eta+x*(1-eta)); /* transformation from [0,1] to [kR*eta,kR] */

sphbes(l,x,&j,&y,&dj,&dy);

sphbes(l,x*S,&jq,&yq,&djq,&dyq);

weightsP(l,n,p,eta,pr);

*A= djq+p[1]*dyq-l*(l+1)*(p[0]*j+p[2]*y)/x;

if (l==0) *B=0; else

*B= (jq+p[1]*yq)/(S*x)-(p[0]*j+p[2]*y)/x-(p[0]*dj+p[2]*dy);

}

void dradP(int l, int n, double x, double *dA, double *dB,

double eta, double pr)

{

double b[5],bb[5],a[5],aa[5],db[5],dbb[5],p[3],kR,S;

if ((l<0)||(n<1)||(eta<0)||(eta>1)||(x<0)||(x>1))

error("radT: bad arguments.");

kR=rootP(l,n,eta,pr);
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S=sqrt((1-2*pr)/(2-2*pr)); /* S=q/k */

if ((x==0)&&(eta==0)

{ if (l>2 || l==1) { *dA=*dB=0; return;}

weightsP(l,n,p,0,pr);

if (l==2) { *dA=S*(1-3*p[0])/15.; *dB=2*(*de);}

else {*dA=0; *dB=-S/3;}

return;

}

x=kR*(eta+x*(1-eta)); /* transformation from [0,1] to [kR*eta,kR] */

beta(l,x,b,bb,db,dbb,eta,pr);

beta(l,S*x,a,aa,db,dbb,eta,pr);

weightsP(l,n,p,eta,pr);

*dA= S*(a[2]+p[1]*aa[2]-l*(l+1)*(p[0]*b[1]+p[2]*bb[1]));

*dB= S*(a[1]+p[1]*aa[1]-(p[0]*b[1]+p[2]*bb[1])-(p[0]*b[2]+p[2]*bb[2]));

}

• normP and normT

The normalization constants of toroidal and spheroidal normal modes of vibration

are returned by these functions, which compute them by means of Gauss-Legendre

interpolation (cf. section C.2.1).

double normT(int l, int n, double eta)

{

double *x,*w,t,dt,y,kR,norm=0;

int m,np;

if (l==0) error("radT: there are no toroidal modes for l=0.");

if ((l<0)||(n<1)||(eta<0)||(eta>1))

error("normT: bad arguments.");
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kR=rootT(l,n,eta);

np=20+(int)kR/10; /* number of points for interpolation */

if ( ((x=malloc(sizeof(double)*(np+1)))==NULL ) ||

((w=malloc(sizeof(double)*(np+1)))==NULL ) )

error("normT: memory allocation error");

gauleg(kR*eta,kR,x,w,np);

for (m=1;m<np+1;m++)

{

y=(x[m]/kR-eta)/(1-eta);

radT(l,n,y,&t,&dt,eta);

norm+=x[m]*x[m]*y*t*t*w[m];

}

free(x); free(w);

return sqrt((1.0/(l*(l+1)*norm));

}

double normP(int l, int n, double eta, double pr)

{

double *x,*w,A,B,y,kR,norm=0;

int m,np;

if ((l<0)||(n<1)||(eta<0)||(eta>1))

error("normT: bad arguments.");

if (eta==1) return 0;

kR=rootP(l,n,eta,pr);

np=20+(int)kR/10; /* number of points for interpolation */

if ( ((x=malloc(sizeof(double)*(np+1)))==NULL ) ||
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((w=malloc(sizeof(double)*(np+1)))==NULL ) )

error("normP: memory allocation error");

gauleg(kR*eta,kR,x,w,np);

for (m=1;m<np+1;m++)

{

y=(x[m]/kR-eta)/(1-eta);

radP(l,kR,y,&A,&B,eta,pr);

norm+=x[m]*x[m]*w[m]*(A*A+l*(l+1)*B*B);

}

free(x); free(w);

return sqrt(1.0/norm);

}

• cross

This function returns the dimensionless factor (kn2a
h,s
n )2 giving the absorption

cross–section of a spherical detector (cf. chapter 5). The calculation is performed

simply using the definition given in the text.

double cross(int n, double eta, double pr)

{

double nm, sig, p[3], v3=0, j, y, dj, dy, kR, qR;

if (eta==1) return 0;

nm=normP(2,n,eta,pr);

weightsP(2,n,p,eta,pr);

kR=rootP(2,n,eta,pr);

qR=kR*sqrt((1-2*pr)/(2-2*pr));

v3=pow(eta,3);



C.2. Source code of the library 179

sphbes(2,qR,&j,&y,&dj,&dy);

sig=(j+p[1]*y);

sphbes(2,kR,&j,&y,&dj,&dy);

sig-=(3*(qR/kR)*(p[0]*j+p[2]*y));

if (eta>0){

v3=pow(eta,3);

sphbes(2,qR*eta,&j,&y,&dj,&dy);

sig-=v3*(j+p[1]*y);

sphbes(2,kR*eta,&j,&y,&dj,&dy);

sig+=(v3*3*(qR/kR)*(p[0]*j+p[2]*y));

}

sig*=nm;

sig*=sig;

sig*=pow(kR,3)*(2-2*pr)/((1-v3)*(1-2*pr));

sig*=0.23873241446; /* 3/4 pi=0.238 */

return sig;

}
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